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Summary

Acoustic noise is an important problem in the modern society and provides
much of the impetus for the development of noise reduction techniques. Pas-
sive methods, such as the use of sound absorbing materials, provide an ad-
equate solution to many noise problems, but for noise reduction at low fre-
quencies (below 1000 Hz) they often lead to an unacceptable increase in mass
and volume. Active control methods are better suited for low frequency noise
problems. This thesis deals with an active control method for reducing the
noise produced by vibrating structures, which is referred to as active structural
acoustic control (ASAC). In ASAC, the minimisation of the sound radiation
is achieved by modifying the vibration using actuators directly attached to
the structure. In this research, emphasis is on the use of piezoelectric patches
as control actuators. The key benefits of using piezoelectric patches instead
of other actuator principles are their low weight and volume, low cost, and
furthermore the possibility of integration into the structure. The goal of this
research is to develop and validate efficient analysis tools for ASAC, and to
apply them for the design of active control systems. In contrast to work that
was presented in the literature, in this thesis a wide range of analysis tools
are combined, resulting in an analysis environment for the design of ASAC
Systems.

As a first step, the dynamical behaviour of a structure with surface bonded
piezoelectric patches is studied with an analytical beam model. This analytical
model proved very useful for studying the fundamental issues of ASAC, but
is not suitable for realistic structures with complex geometries. Therefore,
numerical techniques are applied to model the structural vibration and sound
radiation of arbitrary structures with piezoelectric patches. The structural and
acoustic responses are determined with an uncoupled analysis. The dynamical
behaviour of the structure including piezoelectric patches is modelled with the
finite element method. A model reduction technique is applied to obtain
a model which can be evaluated with low computational effort. The free
field sound radiation associated with the structural vibration is modelled with
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the Rayleigh integral method. Both the structural and acoustic models were
successfully validated with experiments performed on a clamped plate setup
with surface bonded piezoelectric patches.

The analysis tool was applied to investigate the effect of two control strate-
gies. First, the feedforward control of harmonic disturbances was demon-
strated for a control system consisting of piezoelectric patches as actuators,
and accelerometers or microphones as error sensors. Second, the concept of
multiple independent feedback loops, each consisting of a piezoelectric actua-
tor patch, an accelerometer and a direct velocity feedback loop, was applied
to reduce the sound radiation of a lightly damped structure in a broad fre-
quency range. The numerical and experimental results show that significant
reductions in sound power can be obtained with both strategies. Further-
more, the predicted control performances, in terms of sound power, are in
good agreement with the experimental results.

Finally, a strategy is proposed for the optimisation of ASAC systems, which
is based on the numerical model. A genetic algorithm is applied as the opti-
misation routine because it is suited for solving optimisation problems with
multiple optima. The optimisation strategy was successfully applied for the
optimal placement of independent direct velocity feedback controllers. It was
found that a setup with optimally located controllers gives a better control
performance than a setup with arbitrarily located controllers. Furthermore,
there is a good agreement between the predicted and measured sound powers
for the optimised setup.



Samenvatting

Geluidsoverlast is een belangrijk probleem in de hedendaagse maatschappij en
vormt een belangrijke impuls tot de ontwikkeling van geluidsreductie-technie-
ken. Passieve methoden, zoals het gebruik van geluidsabsorberende materialen,
zijn in veel gevallen een adequate oplossing, maar leiden vaak tot een onac-
ceptabele toename in gewicht en volume voor laagfrequente geluidsproblemen.
Actieve regeltechnieken zijn beter geschikt voor laagfrequente geluidsproble-
men. Dit proefschrift behandelt een actieve regeltechniek om het geluid dat
door trillende constructies geproduceerd wordt te reduceren, namelijk active
structural acoustic control (ASAC). Het minimaliseren van geluid wordt met
ASAC bereikt door een verandering van de trillingen met actuatoren die met
de structuur geintegreerd zijn. In dit onderzoek ligt de nadruk op het gebruik
van piézoelektrische patches als actuatoren. De belangrijkste voordelen van
het gebruik van piézoelektrische actuatoren in plaats van andere actuator-
principes zijn het lage gewicht en volume, de lage kosten en de mogelijkheid
tot integratie met de structuur. Het doel van dit onderzoek is om efficiénte
analysegereedschappen voor ASAC te ontwikkelen en valideren, en om deze
toe te passen voor het ontwerpen van actieve regelsystemen. In tegenstelling
tot het werk dat gepresenteerd is in de literatuur, wordt in dit proefschrift
een breed scala van analysegereedschappen gecombineerd, hetgeen resulteert
in een analyse-omgeving voor het ontwerp van ASAC systemen.

In eerste instantie wordt het dynamisch gedrag van een structuur met aan
het oppervlak bevestigde piézoelektrische patches bestudeerd met een analy-
tisch balkmodel. Dit analytisch model bleek erg nuttig te zijn om de fundamen-
tele problemen van ASAC te bestuderen, maar is niet geschikt voor realistische
constructies met complexe geometrieén. Daarom zijn numerieke technieken
gebruikt om de trillingen en de geluidsafstraling van willekeurige construc-
ties met piézoelektrische patches te modelleren. De structurele en akoestis-
che responsie worden bepaald door middel van een ongekoppelde analyse.
Het dynamisch gedrag van de constructie met piézoelektrische patches wordt
gemodelleerd met de eindige elementen methode. FEen reductiemethode is
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toegepast om een model te verkrijgen dat met weinig rekenkracht geévalueerd
kan worden. De geluidsafstraling naar het vrije veld van de trillende con-
structie wordt gemodelleerd met de Rayleigh integraalmethode. Zowel het
structurele als akoestische model is met succes gevalideerd met experimenten
die uitgevoerd zijn aan een ingeklemde plaat met aan het oppervlak bevestigde
piézoelektrische patches.

Het analysegereedschap is toegepast om het effect van twee regelstrategieén
te onderzoeken. Ten eerste is het feedforward regelen van harmonische ver-
storingen gedemonstreerd voor een regelsysteem bestaande uit piézoelektrische
patches als actuatoren, en versnellingopnemers of microfoons als sensoren.
Ten tweede is het concept van meerdere onafhankelijke feedback regelaars, elk
bestaande uit een piézoelektrische actuator patch, een versnellingsopnemer en
een directe snelheidsterugkoppeling, toegepast om de geluidsafstraling van een
lichtgedempte constructie te verminderen in een breed frequentiegebied. De
numerieke en experimentele resultaten laten zien dat met beide strategieén
het afgestraalde geluidsvermogen aanzienlijk gereduceerd kan worden. Tevens
zijn de voorspelde reducties van het geluidsvermogen in goede overeenstem-
ming met de experimentele resultaten.

Tenslotte is een strategie voor de optimalisatie van ASAC systemen voorge-
steld, die gebaseerd is op het numerieke model. Een genetisch algoritme wordt
toegepast als optimalisatieroutine, omdat het geschikt is voor het oplossen
van optimalisatieproblemen met meerdere optima. De optimalisatiestrategie
is met succes toegepast voor de optimale plaatsing van onafhankelijke regelaars
met directe snelheidsterugkoppeling. Een configuratie met optimaal geplaatste
regelaars geeft een betere regelprestatie dan een configuratie met willekeurig
geplaatste regelaars. Voor de geoptimaliseerde configuratie komen het voor-
spelde en gemeten geluidsvermogen goed overeen.
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Chapter 1

Introduction

1.1 Background

In the field of acoustics noise is generally defined as an unpleasant or disliked
sound. This definition is straightforward, but the difference between sound
and noise is by no means precise. For example, in the opinion of some (older)
people, the sound of modern music is the equivalent of noise. On the other
hand, there are few who would say that the sound produced by passing traffic
or a vacuum cleaner is pleasant.

Noise problems have been around for a long time, but the development of
noise reduction technology is increasingly stimulated for several reasons. One
reason is the realisation that long-term exposure to high sound levels leads to
hearing damage or even hearing loss. Furthermore, because of the tendency
towards lightweight design, noise problems arise more often. In addition, sound
is nowadays an important quality issue for consumer products and is even used
as a marketing tool.

There are various methods for tackling noise problems. In the present
work, a relatively new method is considered, which is based on the application
of active control techniques. Emphasis is on the development of analysis tools,
the validation of these tools, and their application for designing control systems
for noise reduction.

1.2 Sound, vibration, reduction

Noise problems are often the result of structural vibration. The vibrations of
a structure (e.g. car body or aircraft fuselage) due to some excitation source
(e.g. engine) are transmitted to the medium surrounding the structure, in



most cases air, and cause pressure disturbances which are experienced as noise.
This exchange of vibrational and acoustic energy is referred to as acousto-
elastic interaction. Acousto-elastic interaction is described by time and space
dependent disturbances, which propagate through the two media as waves,
and are characterised by the wave propagation speed, frequency, wavelength
and amplitude. The human ear is able to detect sound in the frequency range
between 20 Hz and 20 kHz.

Integration of noise and vibration issues in the design of consumer prod-
ucts, cars, machines, etc. can certainly improve the sound quality of such
products, but it will not prevent noise problems. It is therefore common to
tackle noise problems with additional means. The traditional way is to use
passive methods, which are based on absorption and/or reflection of acoustic
energy. Examples of absorption-based techniques are sound absorbing mate-
rials such as glasswool and foam and (coupled) tube resonators [1, 2]. Sound
can be reflected with single or double wall panels [3], for instance as shielding
for noisy machinery. Passive methods provide an adequate solution to many
noise problems, but have the drawback that they tend to be more attractive
for the higher frequencies (> 1000 Hz). At low frequencies, passive methods
often lead to an unacceptable increase in mass and volume.

In contrast to passive methods, active control methods rely on an exter-
nal energy source. Active control systems can take many forms, but such a
system typically consists of sensors, to detect a response, an electronic con-
troller, to suitably manipulate the sensor signals, and actuators, to influence
the response. Active control is mainly suited for the low frequency range,
where passive methods are less attractive [4]. The complementary use of ac-
tive and passive methods is thus an attractive solution to noise (or vibration)
problems. The subject of this thesis is an active control method for reducing
the noise produced by vibrating structures. More precisely, the objective is to
change the vibration of the structure in such a way that the sound radiation
is reduced.

1.3 Active control of sound and vibration

The idea of active control of sound and vibration is not new. In 1936, Paul
Lueg [5] patented a technique for controlling sound with additional sound.
His idea is illustrated in Figure 1.1 for the control of a plane sound wave in
a duct. An acoustic source A produces a sound wave s1, which propagates
through the duct (from left to right). The components of the active control
system are a microphone M, an electric controller V' and a loudspeaker L. The
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signal measured by the detection microphone is passed through the controller
to the loudspeaker. If the controller is tuned such that the speaker produces
a sound wave s9 with the amplitude of the original wave, but shifted 180
degrees in phase, then the original wave is totally cancelled. A person at
the right hand end of the duct would in that case experience no sound. An
essential assumption for this to be true is that all components in the system
behave in a linear way, i.e. the principle of superposition applies.

7§ %
— jL

Figure 1.1: A figure from the illustration page of Lueg’s patent [5].

The concept of using a control system with speakers as actuators and mi-
crophones as sensors to reduce sound is referred to as active noise control
(ANC) [6]. The practical use of ANC was for a long time limited because
the technology means were not available. For high levels of sound reduction
the amplitude and phase of the control signal must be accurate, which was
difficult with analogue controllers. With the arrival of digital signal process-
ing techniques ANC became more feasible. Nowadays, ANC technology is for
example used in active headsets (e.g. by Sennheiser) and to reduce cabin noise
in propeller aircraft (e.g by Lord Corporation).

A drawback of ANC is that when the acoustic source is distributed over
multiple surfaces, as in vibrating plate-like structures, many speakers are re-
quired to provide global control. In this context, global control refers to a
reduction of sound in a large spatial domain. Based on this observation,
Fuller and co-workers [7, 8, 9] introduced an alternative to ANC, in which
the control inputs are directly applied to the structure. The idea is to change
the vibration with the objective of reducing the overall sound radiation. This
technique has been termed active structural acoustic control (ASAC). It is an
extension of a technique called active vibration control (AVC) to the range of
audio frequencies. Conventional AVC methods, which were developed parallel
to ANC methods, were for instance used to control the vibrations of precision
instruments in space structures. Such control problems are generally charac-
terised by much lower frequencies than those in noise control problems. ASAC
also differs from AVC in that it attempts to control only the vibrations which
are important to sound radiation [10]. In AVC the vibration level is reduced
to the best possible extent, with no concern regarding the overall sound.



The first references to ASAC concentrated on using point forces (“shak-
ers”) to control the sound radiated by a plate [7, 8, 9]. Furthermore, the
control system consisted of microphone error sensors that measure the sound
in front of the plate. More recently, distributed piezoelectric actuators have
been used instead of point forces [11, 12]. A distributed piezoelectric actuator
is a layer of piezoelectric material that is bonded to the surface of a structure.
These actuators have the practical advantage that they can be integrated with
the structure. As well as using actuators integrated with the structure, there
has been growing interest in replacing error microphones by error sensors in-
tegrated within the structure [13, 14]. A system with both actuators and
sensors integrated can be used when it is impractical to have microphones in
the acoustic field.

1.4 Smart structures

The idea of integrating actuators and sensors into the structure is considered in
many other engineering fields besides ASAC. Such a structure with integrated
actuators and sensors is often referred to as a smart structure: a structure
with a high degree of integration of the actuators and sensors inside the struc-
ture, such that the structural response can be adjusted to varying loading
conditions [4]. In a smart structure, actuating and sensing is performed by
so-called smart materials. A smart material is a material that responds (e.g.
deforms) to a particular stimulus, such as an electric field (piezoelectric mate-
rials), temperature (shape memory alloys) or magnetic field (magnetostrictive
materials). A number of engineering problems which can possibly be solved
with smart structures is given below. For each item, one or more example
references are given, but it is noted that a very large amount of literature is
available on each subject.

e Tail buffet alleviation [15, 16]. The tail buffet problem of fighter aircraft
occurs when the vortical flow breaks down ahead of the vertical tails. The
resulting loads on the tails (buffet loads) result in a premature fatigue failure
of the tails. Buffet alleviation is obtained with an active control system which
attempts to add damping to the tail structure.

e Smart aircraft wings [17]. The idea of using smart structures technology
for shape control of aircraft wings is aimed at providing improved aerodynamic
and aeroelastic performance compared to conventional wings. Researchers have
for instance looked at hingeless trailing edge control surfaces (“flaps”).

e Active rotor blades [18, 19, 20]. During flight, helicopter rotor blades are
exposed to unsteady aerodynamic loading conditions which results in high vi-
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bration levels of the blades. These vibrations may be reduced with smart
structure concepts (“active twist rotor”, “active blade tips”) to improve the
flight performance and to extend the structural life of components.

Although different engineering problems are characterised by different control
objectives, there is certainly similarity between these problems. For instance,
the same modelling techniques can be used for the analysis of different smart
structures. Some of the issues described in this thesis are therefore useful for
other smart structure applications.

1.5 Active structural acoustic control

1.5.1 ASAC in general

In a complex system such as a car, many disturbance sources and transmission
paths can give rise to noise problems. In some cases the noise problem can
possibly be solved with ASAC. Since the introduction of ASAC, research has
evolved in various directions for solving different noise problems. These di-
rections differ in the sense that the considered noise problems involve various
types of disturbance sources, structures, acoustic environment, actuators and
sensors and control strategy. Some of these issues are discussed briefly.

Enclosed or free sound field

An active control system for reducing the noise produced by a car could be
used to improve the comfort of passengers in the car, but as well to reduce the
sound experienced by people outside the car (“traffic noise”). Control of an
enclosed sound field (inside the car), i.e. sound in a volume of air enclosed by
reflective boundaries, involves resonant behaviour of both the structure and
the acoustic enclosure [21]. On the other hand, control of a free sound field
(outside the car), i.e. sound propagating away from the structure into an in
theory unconfined space, does not involve acoustic resonant behaviour. In this
thesis the control of free field sound radiation is considered.

Disturbance source

In terms of frequency, disturbance sources can be characterised as narrowband
and broadband. A narrowband signal is one with the energy concentrated in a
small frequency band. In a broadband signal the energy is more or less equally
distributed over a wide frequency band. In the case of a car, a running engine
can be seen as a narrowband source, whereas the problem of wind noise is



more broadband in nature. The control of both narrowband and broadband
disturbances is considered in this work.

Actuators and sensors

A large portion of the work on ASAC is concerned with the use of distributed
piezoelectric actuators. Besides the possibility to integrate such actuators
within the structure, piezoelectric actuators have the advantage of low weight
and low cost. There are also several drawbacks such as the limited maximum
strain (up to 0.1 %), and the fact that the material is brittle. In this work,
emphasis is on the development of models of structures with piezoelectric actu-
ators. In addition, the use of the sensors on the structure for control of sound
radiation is considered.

Feedforward or feedback control

Active control strategies can be divided into two categories: feedforward and
feedback. The principles of feedforward and feedback control are shown in
Figure 1.2. The essential difference between the two is that feedforward control
relies on the availability of a reference signal correlated to the disturbance
source, whereas feedback control does not.

Feedforward control Feedback control

Disturbance
source

Control

Controller Disturbance
actuator
Control

AR
TR N i =
=3

Error sensor Error sensor

Figure 1.2: Basic representations of feedforward and feedback control.

Lueg’s idea of controlling sound in a duct is an example of feedforward control.
As shown in Figure 1.1, the speaker input is derived from the reference signal
measured by the detection microphone. On the other hand, in a feedback
control system the control signal is derived from an “error sensor” measuring
the system response. The choice of which control scheme to use strongly
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depends on what is known about the disturbance source. In this thesis both
feedforward and feedback control will be considered.

1.5.2 Present approach

Adequate design of an active control system requires an understanding of the
underlying physics. It is therefore important to have a model of the system
under consideration. Furthermore, with a model the performance of various
control strategies can be investigated. In this respect, it is important to note
that the design of a control system does not only involve the choice of the
control strategy and associated control parameters, but also issues such as the
dimensions and placement of actuators and sensors.

A large portion of the literature on ASAC (and smart structures) concerns
the modelling of structures with distributed piezoelectric actuators and sen-
sors. The early works deal with analytical models of beam and plate systems
(see Chapter 3). These models are very useful for studying the underlying
physics, but are not suitable for representing “real life” structures with com-
plex geometries. On the other hand, the finite element method (FEM) is
suitable for the dynamical modelling of structures with complex geometries
at low frequencies, where active control is attractive. The growing interest in
the design of complex structures with piezoelectric patches has stimulated the
development of “piezoelectric elements”, i.e. finite elements with piezoelectric
capabilities.

An additional argument for using FEM comes from the fact that an ac-
curate knowledge of the transfer functions between the actuators and sensors
is required for control system design. Local effects such as added mass and
stiffness significantly influence these transfer functions, and an erroneous pre-
diction of the control performance is obtained if the local effects are neglected.
With FEM the mass and stiffness effects of piezoelectric patches are easily
included, in contrast to analytical models.

This research deals with the development of analysis tools for ASAC, or
to put it in a more general context, for smart structures. FEM is applied to
model a structure with piezoelectric patches. The use of FEM for the analysis
of ASAC systems is not new, but most earlier works were devoted to the
development of piezoelectric elements rather than the use of FEM models for
control system design. A FEM model is generally described by a large number
of degrees of freedom. This feature makes such a model not suitable for the
design of an active control system. Therefore, a model reduction technique is
applied to obtain an efficient analysis tool, which can serve as a basis for the
design of a control system.



In order to design a control system for noise reduction, a model for predict-
ing the acoustic radiation of the structure must be available. It is noted that
in this work emphasis is on a model for the structural vibration. The acoustic
radiation is analysed with a model that is only valid for flat plates, which is
sufficient for the test problems considered in the present investigation.

1.6 Problem definition

In view of the considerations in the previous section, the goal of this study is
formulated as follows:

e Development and validation of efficient analysis tools to predict the dy-
namical behaviour of structures with integrated piezoelectric patches and
the corresponding sound radiation.

e Application of the analysis tools for the design and optimisation of active
control systems for reducing the sound radiation of plate-like structures.

1.7 Outline of the thesis

This thesis is divided in two parts according to the previous problem definition.
The first part (Chapters 2, 3 and 4) deals with the modelling issues and
validation of the models. In the second part (Chapters 5, 6 and 7) these
models are used to investigate the performance of two control strategies and
to perform an optimisation study.

In Chapter 2 it is described how piezoelectric materials are applied in ASAC
as actuators and sensors. Also, the basic equations governing the dynamical
behaviour of piezoelectric materials are introduced.

An analytical model for beam structures with surface bonded piezoelectric ac-
tuators and sensors is presented in Chapter 3. This model is used to study the
influence of the mass and stiffness of the actuators and sensors on the dynam-
ical behaviour, and to study the fundamental issues of ASAC. Furthermore,
the analytical model serves as a validation tool for numerical codes.

In Chapter 4 the numerical approach for the modelling of ASAC systems is
presented and validated. The size of a FEM model of a structure with surface
bonded piezoelectric actuators and sensors rapidly increases with the complex-
ity of the structure. Therefore a technique for reducing the number of degrees
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of freedom is applied. In this way, calculation times are drastically reduced,
which is essential for control system design and parameter studies. Next, a
model for predicting the acoustic radiation of the structure is described. The
structural and acoustic models are validated with the results of experiments
performed on a clamped plate setup.

The numerical model provides the basis to simulate and investigate the per-
formance of various control strategies. Two control strategies are considered
in this thesis. First, feedforward control for reducing acoustic radiation due to
a narrowband disturbance source is studied in Chapter 5. Second, the control
problem considered in Chapter 6 involves a broadband disturbance, for which
feedback control is applied. In both chapters numerical results are compared
with experimental results, again for the clamped plate setup.

A further application of the numerical model is demonstrated in Chapter 7. In
this chapter an approach for the optimisation of ASAC systems is presented.
The approach is applied and validated for a test case involving the optimal
placement of actuators and sensors.

Finally, conclusions and recommendations are presented in Chapter 8.



10




Chapter 2

Piezoelectric Materials

2.1 Introduction

Piezoelectric materials have the ability to convert mechanical energy into elec-
trical energy, and vice versa, the ability to convert electrical energy into me-
chanical energy. In 1880 Pierre and Jacques Curie (21 and 24 years of age!)
discovered that certain crystals produce an electrical charge under deforma-
tion, where the amount of charge depends on the deformation magnitude.
This effect, which is shown in Figure 2.1, is called the direct piezoelectric ef-
fect. The inverse of the direct effect, the so-called converse piezoelectric effect,
was demonstrated by the Curie brothers in 1881, after Gabriel Lippman de-
duced it from thermodynamic principles. The converse effect is that such a
crystal becomes strained when an electric field is applied, and the magnitude
of the developed strain depends on the field strength.
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Figure 2.1: The direct and converse piezoelectric effects.

The Curie brothers carried out experiments with crystal materials such as
Rochelle salt, tourmaline and quartz. The first applications of these natural
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piezoelectric materials date from the first world war, when quartz was used
in ultrasonic submarine detectors. Because the piezoelectric effect is very
small in natural crystals, the number of applications was limited for a long
time. Still, some famous applications, such as the phonograph pick-up, were
already conceived at that time. The development of piezoelectric ceramic
materials (piezoceramics) started during the second world war. Piezoceramics
are prepared by sintering metallic oxide powders. The piezoelectric properties
of these materials are up to 100 times greater than those of natural crystals.
The most widely used piezoceramic is lead-zirconate-titanate, which is usually
referred to as PZT. Since the introduction of piezoceramics, the number of
applications has increased rapidly. Piezoceramics are nowadays used in for
instance audio buzzers, ignition systems, microphones and accelerometers.

In the field of active control, piezoelectric materials are also widely used,
both as actuators and sensors. This chapter provides an overview of how
piezoelectric materials are applied in active (structural acoustic) control. Fur-
thermore some issues related to the modelling of the dynamical behaviour of
such materials are presented.

2.2 Piezoelectric actuators and sensors

Figure 2.2 shows a piece of piezoelectric material with electrodes attached to
the top and bottom surfaces. An electrode is a thin metallic layer with high
electrical conductivity, e.g. silver or gold, to create a uniform distribution of
the electric potential on a surface. When a DC voltage source is connected to
the electrodes an electric field E is induced in the material pointing from the
positive to the negative electrode. The so-called poling direction P is along
the vertical 3-axis. Poling and poling direction are more clearly explained
in Section 2.3. For now, it is sufficient to know that if the poling direction
and the direction of the electric field are equal, the material will extend in
the direction of the field (3-axis) and contract in the directions perpendicular
to the field (1,2-axes). On the other hand, if the electric field is opposite to
the poling direction, the material contracts in the direction of the field and
extends in the directions perpendicular to the field.

The amount of strain due to an applied electric field is specified by the
piezoelectric strain constant d. For the deformation of a piezoceramic element
the strain constants dssz, d3; and dszo are of interest, where the first index de-
notes the direction of the field and the second index denotes the direction of
mechanical strain. The deformation in the direction of the field is in analogy
with the piezoelectric strain constant referred to as the dss-effect. The defor-
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Figure 2.2: The d33-effect and d3;-effect.

mation in the directions perpendicular to the field is the so-called ds;-effect.
Piezoceramic materials are isotropic in the plane normal to the poling direc-
tion, so d31 = dzo2. The d3q constant of piezoceramics is usually one-half of the
ds3 constant.

The dss-effect and the dsi-effect in piezoelectric materials are widely used
for actuation and sensing purposes. Piezoelectric actuators rely on the con-
verse effect, whereas piezoelectric sensors rely on the direct effect. Different
types of piezoelectric actuators and sensors used in the field of active (struc-
tural acoustic) control are considered in the following.

2.2.1 Actuators
Piezoelectric stacks

The dss-effect is used in piezoceramic stack actuators. The elongation along
the 3-axis of a piezoceramic element such as shown in Figure 2.2 is propor-
tional to the applied electric field, which is equal to the voltage across the
electrodes divided by the length of the piezoceramic element. The maximum
strain that can be developed in piezoceramics by electrical actuation is ap-
proximately 0.1 %. Therefore, for “large” actuator displacements, which are
desired in many applications, a long piezoceramic element is required. A long
piezoceramic element, however, requires a high voltage to obtain an electric
field of sufficient magnitude. This problem is overcome in piezoelectric stack
actuators by using stacked thin piezoceramic layers, usually PZT, separated
by electrodes (see Figure 2.3). In this way, a sufficiently large electric field
is induced in each layer with a low voltage. Stack actuators are mainly used
for position precision control and vibration control where only small actua-
tor strokes, and possibly large forces, are required (see reference [22] for an
example).
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Figure 2.3: Schematic layout of a piezoelectric stack actuator.

Piezoelectric patches

The ds;j-effect is used in so-called laminar piezoelectric actuators (see Fig-
ure 2.4). Such actuators will be called piezoelectric patches in this thesis. A
patch is a thin layer of piezoelectric material, often PZT, covered with elec-
trodes on both sides. The patches used in the experiments presented in this
work are PZT patches with in-plane dimensions of 50 x 30 mm and thicknesses
up to 1 mm.
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Figure 2.4: Deformation of an unconstrained piezoelectric patch due to an
electric potential.

The voltage is applied across the thickness of the patch and the electrodes
create an equal potential distribution. An electric field in the poling direction
results in a contraction in the plane of the patch (1-2 plane). The geometric
layout of the patch ensures that the deformation is mainly in-plane.

When two glued patches with opposite poling directions are subjected to
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the same field (in sign and strength), then the extension of one patch and the
contraction of the other results in out-of-plane bending. Such actuators are
so-called bimorph actuators. Likewise, piezoelectric patches can be bonded
to a thin plate-like structure to obtain a bending of the structure (see Fig-
ure 2.5). As a result of an applied voltage the patch attempts to extend but
is constrained somewhat due to the stiffness of the plate. The result is an
out-of-plane bending of the plate. It is the out-of-plane vibration of plate-like
structures that causes a noise problem. The piezoelectric patch is therefore
an attractive option for the use as an actuator in active structural acoustic
control.

In Figure 2.5 two configurations of surface bonded piezoelectric patches
are shown. The bonding layer between the structure and a patch is usually
much thinner than the patch and plate, and is therefore not shown. In the
so-called symmetric configuration two patches are bonded symmetrically on
opposite sides of the structure. If the electric fields across the patches have
equal magnitudes but opposite directions, a pure bending of the structure
is obtained. However, if the electric fields are equal in both magnitude and
direction, a pure extension is the result. It is noted that this is true if the
poling directions of the two patches are equal. In Figure 2.5 the case of pure
bending is shown. The configuration with one surface bonded patch is referred
to as the asymmetric configuration. In this configuration, both extension and
bending of the structure is obtained. A more detailed analysis of the two
configurations will be given in Chapter 3.

Symmetric configuration Asymmetric configuration
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$ Structure
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Figure 2.5: Symmetric and asymmetric configurations.

The key benefits of using piezoelectric patches for ASAC instead of other actu-
ator principles are their low weight and volume, low cost, and furthermore the
possibility of integration into the structure. On the other hand, piezoelectric
patches have a number of drawbacks which could make the ASAC concept in-
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feasible. Piezoelectric patches are brittle (i.e. thus not robust with respect to
damage), not easily conformable to curved structures and, most importantly,
have a low maximum strain (“low control authority”). To overcome these
drawbacks researchers are exploring new actuation concepts. An example is
given in the next section.

Piezoelectric fibre composites

One new actuator concept which is not further considered in this thesis but
certainly worth mentioning is the piezoelectric fibre composite [23]. A piezo-
electric fibre composite (PFC) consists of piezoceramic fibres aligned in a poly-
mer matrix, see Figure 2.6. The fibres, which are manufactured by extrusion
techniques, are approximately 100 — 130 microns in diameter. A so-called in-
terdigitated electrode (IDE) is etched on the top and bottom surfaces of the
matrix material. The electrode fingers have alternating polarity, which causes
the electric field to be aligned primarily along the fibres. In this way poling is
mainly along the z-axis, allowing the use of the dss-effect.

Interdigitated
electrode

Polymer

PZT fibre

Poling direction
Figure 2.6: A piezoelectric fibre composite (PCF) with interdigitated electrode.

PFCs have several advantages over standard piezoelectric patches. The max-
imum strain is higher since the poling direction is along the fibre direction.
Because of the combination of ceramic fibres and soft matrix polymer, PFCs
are much more robust to damage. The elastic and electrical properties of the
matrix material may be enhanced with additives such as glass fibres or PZT
filler. Furthermore, PFCs can be fully integrated into a host structure, and
are conformable to curved structures.
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2.2.2 Sensors
Piezoelectric patches and polymers

Because of the direct piezoelectric effect, piezoelectric patches can also be used
for sensing the structural vibration. For instance, the symmetric configuration
of Figure 2.5 can serve as an actuator/sensor pair, where one patch is the
actuator and the other patch is the sensor (see Chapter 6).

Actuator patches are mostly made of the piezoceramic material PZT. For
sensing purposes, however, also a polymer material exhibiting the piezoelectric
effect is suitable. The most used piezoelectric polymer is probably polyvynili-
dene fluoride (PVDF or PVF3). The material properties of PVDF are com-
pared to those of PZT in Table 2.1. Because of the small piezoelectric constant
and Young’s modulus, PVDF has a moderate ability for transforming electri-
cal energy into mechanical energy. This characteristic makes PVDF not very
suitable for use as an actuator. The high compliance, however, has the advan-
tage that the material hardly influences the dynamical behaviour of the host
structure. For this reason PVDF films are mainly used as sensors in active
noise and vibration control. The use of PVDF films as distributed sensors (or
actuators) is beyond the scope of this thesis. There is however a large amount
of literature on this topic, see for example references [24, 25, 26].

Property PZT PVDF
Density p [kg/m?] 7800 1800
Young’s modulus 1/S8%  [N/m?] 50-10° 2.0-10°
Piezoelectric constant  ds3 [m/V]  420-107*2 —33.107!2
Dielectric constant €95 [F/m]  190-101° 1.1.1071°
Max. electric field [V/m] 1-10° 30-10°
Temperature range [°C] up to 150  —40 to 80

Table 2.1: Typical values for material properties of PZT and PVDF.

Accelerometers

In this work extensive use is made of piezoelectric accelerometers. The type of
accelerometer considered here is a so-called compression mode accelerometer,
which is based on the dsgz-effect. The basic design of a piezoelectric compres-
sion mode accelerometer is shown in Figure 2.7.

A piezoelectric element is placed between the mounting base of the ac-
celerometer and a so-called seismic mass. When the accelerometer is subjected
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Figure 2.7: lllustration of a piezoelectric compression mode accelerometer.

to a vibration, a force acts on the piezoelectric element which is proportional
to the acceleration of the seismic mass. The charge on the electrodes of the
piezoelectric element is proportional to the applied force and thus to the ac-
celeration. An external charge amplifier is used to convert the charge signal
into a voltage, which can be used as an error signal for control.

2.3 Piezoceramics

For a basic understanding of the piezoelectric effect in piezoceramics, the ma-
terial is considered on an atomic scale. The polycrystalline structure of a
piezoceramic is made up of negatively and positively charged atoms (ions) oc-
cupying specific positions in a repeating unit cell. The unit cell of the piezoce-
ramic PZT has two states, which are shown in Figure 2.8. Above the so-called
Curie temperature T, the crystal structure has a centre of symmetry. In this
state, where the centres of positive and negative charge both correspond to
the centre of symmetry, the unit cell is electrically neutral. However, the unit
cell has no centre of symmetry (non-centrosymmetric) below the Curie tem-
perature. Now the centres of positive and negative electric charge within the
unit cell are not located in the same place, i.e. the unit cell now possesses a
natural dipole!. In this state, the material has so-called spontaneous polarisa-
tion. The polarisation direction is the direction when pointing from the centre
of negative charge to the centre of positive charge.

Below the Curie temperature, a deformation of the unit cell due to me-
chanical loading is accompanied by a shift of the ions (direct effect). Also,
when the unit cell is exposed to an external electric field, a shift of the ions is
accompanied by a deformation of the structure (converse effect).

LA dipole consists of two equal point charges of opposite sign separated by a certain
distance.
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Figure 2.8: PZT unit cell: T > T, neutral (left); T' < T, electric dipole (right).

Poling

In a fabricated piezoceramic there are many domains consisting of unit cells
with the same polarisation direction. Because of the random distribution of
domain orientations in the material, the net electric dipole summed over the
whole material is zero. Therefore, the material has isotropic material proper-
ties and does not exhibit the piezoelectric effect. With a process called poling
the electric dipoles are reoriented in order to create macroscopic spontaneous
polarisation. Figure 2.9 gives a schematic illustration of the domain orienta-
tions before and after the poling process.

Polarisation direction

____l____+_
D

Before poling After poling

Figure 2.9: Poling of piezoceramics (such as PZT): before poling, random ori-
entation of domains (left); after poling, macroscopic polarisation due to oriented
dipoles (right). E is the direction of the electric field during poling, P is the
resulting direction of macroscopic polarisation.
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During poling, a strong DC electric field (> 2 kV/mm) is applied to the piezo-
ceramic. With the electric field applied, the domains are aligned in the direc-
tion of the field. The material expands along the axis of the field and contracts
perpendicular to that axis. After removal of the field, the electric dipoles stay
roughly in alignment. The material has now what is called a remanent polari-
sation. The net dipole is normally not detectable because the surface charges
are rapidly neutralised by ambient charged particles. The piezoelectric effect
is maintained as long the material is not exposed to extreme temperature,
electric or mechanical conditions. In Appendix A additional information on
piezoelectricity is given. For thorough discussions on this subject the reader
is referred to for instance the textbooks of Tiersten [27] and Cady [28].

2.4 Basic equations

In this section the basic equations governing the dynamical behaviour of piezo-
electric materials are presented. These equations form the basis for the ana-
lytical and numerical models of structures with surface bonded piezoelectric
patches. The following assumptions are made:

e Linear piezoelectric material behaviour. Ferroelectric hysteresis is ne-
glected and there is no polarisation reversal or depoling due to extreme
thermal, electrical, or mechanical loading.

e No thermal effects. This assumption is valid if the piezoelectric material
operates in an environment with small temperature variations. Some
notes on the modelling of thermal effects are given in Appendix A.3.

e Quasi-static electric field behaviour. In a piezoelectric material the char-
acteristic wavelength of mechanical vibration is much shorter than the
electromagnetic wavelength [27]. Therefore, the magnetic effects are
negligible compared to the electrical effects.

2.4.1 Constitutive relations

The linear material behaviour relating the stress and strain in an elastic body
is described in Cartesian coordinates by the constitutive relation (using index
notation and Einstein’s summation convention):

€ij = Sijkl Okl (2.1)

where €;; and oy are the components of the strain and stress tensors, and
Sijr are the components of the compliance tensor. This equation is the more
general form of Hooke’s law.
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The linear constitutive behaviour of a dielectric medium is described in
terms of the electric fluz density® and electric field strength. In index notation,
this equation reads:

Di = Eij Ej (22)

where D; and E; are the components of the electric flux density and electric
field vectors and g;; are the components of the dielectric permittivity ten-
sor. In a vacuum, the electric flux density and electric field are related by
g0 = 8.85-107'2 F/m (= Farad/m). The electric permittivity in other dielec-
tric media is often expressed relative to g.

For a piezoelectric material, the mechanical and electrical constitutive
equations are coupled:

¢ij = S okt + diij By, (2.3a)
D; = digg oy + €5, i, (2.3b)

where d;;, are the components of the piezoelectric charge coefficient tensor.
The piezoelectric charge coefficient tensor measures the amount of strain de-
veloped in an electric field in the absence of stress (unconstrained), or the
amount of electric flux density due to a stress in a zero electric field. Tensor
SE is the compliance for a constant electric field and €7 is the permittivity
tensor evaluated under constant stress. The strain and electric field are re-
lated to the components of the displacement field w; and the electric potential
field ¢ by the compatibility equations:

1
€ij = 5 (Wi +wji) s (2.4)
Ei=—¢,. (2.5)

where a subscript ,¢ denotes the differentiation with respect to coordinate
direction z;. Because of the symmetry of the tensors, the piezoelectric consti-
tutive relations can be written in matrix notation as:>

(ot L1 e} o0

2Electric flux density is also called dielectric displacement. However, electric flux density is
used rather than dielectric displacement to prevent confusion with mechanical displacement.

3In this thesis, a bold lower case symbol denotes a vector (e.g. v), while a matrix is
denoted by a bold upper case symbol (e.g. M). In some cases, however, this convention is
ignored to keep the notation consistent with the literature. Then, a vector may be written
as V and a matrix as m (see equation 2.6).
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where € is the vector with the components of the strain tensor. This vector will
be called the strain vector. Similar terminology is used for all other vectors
and matrices in equation (2.6). The strain and stress vectors are defined as
follows:

€11 o11
€22 022
€ [0}
e={. BV, ="} (2.7)
2€23 0923
2e31 031
2€12 ) o12)

The storage order of the shear strains and stresses is according to the IEEE
standard on piezoelectricity. It is noted that this notation is not always fol-
lowed in the field of mechanical engineering. In addition, in the literature
the constitutive relations (2.6) are sometimes presented in an alternative way.
These alternative formulations can be found in Appendix A.

Piezoceramics

It was already mentioned that an unpoled piezoceramic has isotropic mate-
rial properties. When the material is poled, the isotropy is destroyed in the
direction of the electric field, but maintained in the plane normal to the field.
Therefore, all piezoceramics have the same type of constitutive matrix. Due
to symmetry within the unit cell, the compliance, piezoelectric and dielectric
matrices have few non-zero elements [28].

Electrode
Poling direction

Figure 2.10: Definition of the coordinate system.

It is assumed that the poling direction is along the 3-axis, see Figure 2.10.
After the poling process, the symmetry of the piezoceramic is equivalent to
that of a hexagonal crystal. The elastic compliance matrix under constant
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electric field is:

sk SE SE o
St SE SE 0
SE:S@S@S;%O

0 0 0 S§
o 0 0 0 SE o
L0 0 0 0 0 S&]

The components of the elastic compliance matrix are often expressed in terms
of the Young’s moduli, the Poisson’s ratios and shear moduli. The following
relations are valid:

Sfi=1/En,  Siy=-viz/En, (2.9a)
S¥ =1/Es3, Sl =—w3/Bn = —v31/Ess, (2.9D)
St =1/Gas, Sé6 = 2(1+v12)/Ent (2.9¢)

The piezoelectric charge coefficient matrix d and the dielectric matrix under
constant stress €7 reduce to:

0 0 0 0 dj 0
d=|0 0 0 ds 0 0], (2.10)

and
e, 0 0
=10 €7 0]. (2.11)
0 0 e85

A total number of ten independent material properties define the constitutive
behaviour of a piezoceramic.
2.4.2 Equations of motion

The equilibrium of continuous piezoelectric media is described by two equa-
tions. The first equation follows from Newton’s law and describes the balance
of mechanical forces. In Cartesian coordinates this equation is given by:

0ijj + fi = pii + cai, (2.12)

where f; are the components of the body force vector, p is the mass density and
cq is the viscous damping factor. Symbols w; and w; denote the first and second
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time derivatives of displacement components w;, respectively. The second
equilibrium equation describes the balance of electrical charges. Since it was
assumed that the electric field behaviour is quasi-static, Maxwell’s equation
for quasi-static electric fields is applied:

D,",‘ —q = 0, (213)

where ¢ is the free charge density. In integral form, this equation states that
the electric flux emanating from a closed surface is equal to the total charge
enclosed by that surface. The equilibrium equations (2.12) and (2.13), con-
stitutive relations (2.3) and compatibility equations (2.4) and (2.5) can be
combined to four differential equations in terms of the displacements w; and
the electric potential ¢. The surface boundary conditions that are required
to solve the equations of motion can take four forms. On surfaces where the
displacement or electric potential is prescribed, the boundary conditions are:

w; = W o $=20, (2.14)

where the “tilde” symbol denotes a prescribed value. On surfaces where the
stress or electric flux density is prescribed the boundary conditions are:

n,-o*,-j :5'j, or n,‘D,‘:D, (2.15)

where n; are the components of the unit normal vector on the surface.

It is in general not an easy task to find a closed form solution for the
dynamical behaviour of a piezoelectric material. In most cases the geometry
and boundary conditions are very complex, so one has to use a numerical
approach such as the finite element method (see Chapter 4). However, in a
few cases where special assumptions apply, the dynamical behaviour can be
studied with an analytical model. An example is given in the next section.
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2.5 Piezoelectric coupling

The basic technique for solving the coupled electromechanical response is il-
lustrated with an example consisting of a piezoelectric bar. A one-dimensional
model for the longitudinal vibration of the bar is derived, which can be seen
as a simple representation of a piezoelectric stack actuator. Both the free and
forced undamped vibrations are considered. Emphasis is on how the dynami-
cal behaviour is determined by the piezoelectric properties and the electrical
boundary conditions.

Poling direction

Electrode Electrode
} == 2(3)
z=0 »w’ ) z=1L

Figure 2.11: A prismatic piezoelectric bar.

Consider a prismatic piezoelectric bar of length L which is poled along the
length of the bar (see Figure 2.11). It is assumed that all points on a cross
section in the bar have an equal longitudinal displacement and an equal elec-
tric field. Lateral deformation (Poisson contraction) is allowed. If the length
is large compared to the cross-sectional dimensions of the bar, then the ef-
fect of lateral displacements upon longitudinal vibration is negligible. The
assumptions made correspond with non-zero stress in the longitudinal direc-
tion, whereas all other stresses are zero. In addition, there is only an electric
field along the length of the bar. For this particular case, the constitutive
relations (2.6) reduce to:

€33 = S83 033 + d33 Es., (2.16a)
D3 = d33 033 + 5g3 E3 . (2.16b)

The elastic compliance is replaced by Sé% = 1/E,., where E,. is Young’s
modulus in the z-direction. Equations (2.16) can also be written as:

033 = Epe €33 — dgnge E3 s (2.17&)
D3 = ds3Epe €33 + €33(1 — k33) E3 (2.17b)

where k33 = ds3y\/Epe/cs is the so-called electromechanical coupling fac-
tor [29]. This factor measures how well a piezoelectric material converts me-
chanical energy into electrical energy or converts electrical energy into mechan-
ical energy. The electromechanical coupling factor can have values between 0
(no coupling) and 1, but is up to 0.7 for piezoceramics.
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The equations of motion (2.12) and (2.13) reduce to a much easier form
for this one-dimensional problem. The combination of these equations and
the constitutive relations (2.17), and substitution of equations (2.4) and (2.5),
gives two equations in terms of the displacement w(z,t) and electrical poten-
tial ¢(z,1):

0?w(z,t) 0*w(z,t) 0?¢(z,t)
pYe = Epe 9.2 + d33Epe o2 (2.18a)
2 2 2
0°P(z,t) k3, 0*w(z,t) ’ (2.18b)

022 N d33(1 - k§3) 022

where pp. is the density of the piezoelectric material. Note that the body
forces and damping are neglected in equation (2.18a). Equations (2.18a) and
(2.18b) can be combined to a one-dimensional wave equation in terms of the
mechanical displacement:

Pw(zt) 5 9®w(z,t)
ez T g2

Epe
Cro = 4| ———PE 2.20
! Ppe(l — k§3) ( )

In this equation ¢, is the propagation speed of longitudinal waves travelling
through the bar. This constant clearly depends on the piezoelectric properties
of the bar. If the piezoelectric coupling is zero (ds3 = 0), the wave propagation
speed reduces to that in an elastic bar: c. = \/Epe/ppe-

The frequency domain equivalent of the wave equation is obtained when
assuming harmonic time dependence, i.e. w(z,t) = w(z) &, where w(2) is the
displacement amplitude, j is the imaginary unit and w is the angular frequency.
The solution of the resulting ordinary differential equation is:

(2.19)

where

w(z) = Cy sin(k;z) + Cy cos(kz) (2.21)

where k; = w/cpe is the longitudinal wave number. The solution for the electric
potential follows from equation (2.18b), and is given by:

o(z) = — i

= ———=———[C1 sin(k;z) + Cy cos(kyz)] + C3z + Cy . (2.22)
d33(1 — k33)

The electric potential distribution is thus a linear field superposed on a field
similar to that for the displacement.
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The integration coefficients C7 to Cy can be solved with two mechanical and
two electrical boundary conditions. In the following, the zero displacement and
zero stress boundary conditions are referred to as fized and free, respectively.
If the electric potential on an electrode is zero, then the electrode is said to
be grounded. The combination of two grounded electrodes is called a short
circuit. The combination of a grounded electrode and an electrode subjected
to a zero electric flux density boundary condition is called an open circuit.

First, the modal properties are considered for various boundary conditions
at z = L, whereas the bar is fixed and grounded at z = 0. Substitution of
the general solution into a set of boundary conditions leads to an equation
of the form M(w)a = 0 (unforced), where a is the vector with integration
coefficients. The eigenfrequencies follow from solving the characteristic equa-
tion [M(w)| = 0. In Table 2.2 the eigenfrequencies are given for the possible
combinations of boundary conditions at z = L.

Short circuit Open circuit Elastic
(¢=0) (D3 =0)
Fixed 1T Cpe 1T Cpe 1T Ce
(w=0) L L L
Free (2i — 1)me (2 — 1)me
k3, tan(k L) = kL pe c
(053 =0) Fastan(kil) =k 2L 2L

Table 2.2: Eigenfrequencies w; (i =1,2,...) of the bar for different bound-
ary conditions at z = L. The bar is fixed and grounded at z = 0. Also the
eigenfrequencies of an elastic bar are given (k33 = 0).

The eigenfrequencies do not depend on the electrical boundary conditions
if the bar is fixed at both ends. The expression for the eigenfrequency is
similar to that of an elastic bar, but with a different wave propagation speed.
Since the electromechanical coupling factor is between 0 and 1 (cpe > ¢¢), the
piezoelectric bar has higher eigenfrequencies than its elastic counterpart. If
the bar is free at z = L, then the eigenfrequencies associated with the short
circuit and open circuit are different. In the case of the short circuit boundary
condition, no closed-form solution is available. The roots of the corresponding
characteristic equation are smaller than those for the open circuit case, but
the difference rapidly decreases with increasing mode number. The first three
displacement eigenmodes w;(z) and electric potential eigenmodes gZ;,(z) of a
fixed-free bar are shown in Figure 2.12 for open circuit and closed circuit
conditions. In the figure the values of 1;(z) and ¢;(z) are plotted as functions
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Mode 1 Mode 2 Mode 3

Figure 2.12: Comparison of displacement eigenmodes w;(z) and potential eigen-
modes ¢;(2) (i = 1,2, 3) for short circuit (—) and open circuit (-----) conditions.
The bar is free at z = L, and fixed and grounded at z = 0 (k33 = 0.7).

of the coordinate along the bar.* It can be observed that both the displacement
and electric potential eigenmodes depend on whether the bar is subjected to
a short circuit or open circuit condition.

The frequency domain response of the displacement at z = L on a longi-
tudinal stress applied in the same point is shown in Figure 2.13. As before,
the bar is fixed at z = 0 and subjected to either a short circuit or open circuit
boundary condition. A clear difference can be observed between the response
of a piezoelectric bar and an elastic bar. Furthermore, the dynamical response
of the piezoelectric bar depends on the type of electrical boundary condition.

To conclude, the dynamical behaviour clearly depends on the piezoelectric
properties of the bar. Furthermore, just as is the case for the mechanical
boundary conditions, the dynamics are as well influenced by the electrical
boundary conditions. It will be shown in Chapter 3 that the piezoelectric
coupling is of minor concern for the dynamical behaviour of structures with
surface bonded piezoelectric patches.

2.6 Concluding remarks

In this chapter some background information was given on piezoelectricity
and on the application of piezoelectric materials in active (structural acoustic)
control. With the growing interest in active control, a number of new sensor
and actuator concepts have been developed. In this thesis mainly the use of
piezoceramic patches (PZT) is considered. The basic equations governing the

4The shapes must not be confused with the bending mode shapes of a beam.



Piezoelectric Materials 29

10° |

— Elastic
== Short circuit
10-4_ — Open circui.t

0 s 2 3T
keL H

Figure 2.13: Transfer function between force and displacement at the free end
of a piezoelectric bar (k33 = 0.7, short circuit or open circuit) and an elastic bar
(k33 = 0). The results are normalized to the static displacement of an elastic bar.

coupled electromechanical behaviour of such materials were introduced. It was
shown that the dynamical behaviour of piezoelectric materials is determined
by their mechanical and electrical properties, and the mechanical and electrical
boundary conditions.
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Chapter 3

Analytical Study of Active
Structural Acoustic Control

3.1 Introduction

In the previous chapter, it was explained how piezoelectric patches are used
as actuators and sensors in active structural acoustic control (ASAC) and in
other smart structure applications. In this chapter, the basic physical aspects
of structures with surface bonded piezoelectric patches are considered in more
detail. In the first part of this chapter, an analytical model of a beam with
surface bonded piezoelectric patches is presented. This model is applied in the
second part in a preliminary study of ASAC.

To put the current model into perspective, a short review of various ana-
lytical models of beam and plate structures with piezoelectric patches is pre-
sented in Section 3.2. It is stressed that the current model, which is described
in Section 3.3, is not new. The model is based on the same assumptions and
includes the same effects as the models presented in several other works. How-
ever, the current model is different from previous works in the sense that it
is implemented in such a way that beams with multiple patches can easily be
modelled. In Section 3.4 it is demonstrated that the mass and stiffness effects
of the piezoelectric patches, which are included in the model, can be of signif-
icant influence on the dynamical behaviour of the structure. The beam model
is applied in Section 3.5 in a preliminary study of ASAC. It must be said that
the test problem concerns a highly idealised structure and that furthermore a
highly idealised control system is used. On the other hand, the problem gives
insight in the fundamental issues of ASAC. More realistic problems will be
dealt with in Chapter 4.
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3.2 Literature survey

Since the early 1980s many papers have been published concerning the use
of piezoelectric materials for the active control of sound and vibration. A
selection of relevant papers concerning analytical models of beam and plate
structures with surface bonded piezoelectric patches is given in Table 3.1.

Bailey and Hubbard [30] were among the first who explored the use of
piezoelectric actuators for active vibration control. They demonstrated vibra-
tion reduction of a beam fully covered with a thin layer of PVDF by means of
analytical and experimental work.

Crawley and De Luis [31] presented a rigorous study of “symmetric actu-
ation” by two piezoelectric patches bonded symmetrically on opposite sides
of a thin beam. They demonstrated a number of important results, such as
increased actuation effectiveness for stiffer and thinner bonding layers and for
a stiffer piezoelectric material. For an increasingly stiffer and thinner bond-
ing layer, the shear forces between the patches and the beam are transferred
over a small zone near the ends of the patches. In the limit, for an infinitely
stiff and thin bonding layer (i.e. a perfect bonding condition), the load on the
beam can be represented by a pair of opposite bending moments if the actu-
ators are driven “out-of-phase”. On the other hand, if the patches are driven
“in-phase”, the load is equivalent to a pair of opposite normal forces. The
magnitude of the bending moments or normal forces is proportional to the
applied voltage.

Many papers have been published since the work of Crawley and De Luis.
Dimitriadis, Fuller and Rogers [32] considered the application of symmetrically
bonded piezoelectric patches to a simply supported plate structure, under the
assumption of perfect bonding. Kim and Jones [33] extended the model of
Dimitriadis et al. by introducing a bonding layer between the plate and the
patches.

In other works, the “asymmetric actuation” by a single surface bonded
patch was investigated. The asymmetric configuration induces longitudinal
and transverse motions simultaneously in the structure. Gibbs and Fuller [34]
used a static analysis to determine the equivalent external loads on a beam,
i.e. normal forces and bending moments at the ends of the patch, and they
developed a dynamical model to calculate the beam response to these loads.
They neglected the mass and stiffness of the patch in the dynamical model.
Charette, Guigou, Berry and Plantier [35], presented a model which accounts
for the mass and stiffness effect of a patch. They used a Rayleigh-Ritz ap-
proach to model a beam with a surface bonded PZT actuator patch on one
side and a PVDF sensor layer on the other side. Their model describes the
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coupled longitudinal and transverse motion of the beam. In all of the pre-
viously mentioned works on beam models, the patches are aligned with the
beam axis. However, if a patch is arbitrarily oriented with respect to the beam
axis, then the actuation also couples to the torsional motion. This effect is
included in the models presented by Park, Walz and Chopra [36] and Park
and Chopra [37].

It is stressed that the current beam model is not new. It is based on the
same assumptions and incorporates the same effects as some of the previously
mentioned models. However, the current model differs from existing models
in the sense that it is implemented using a so-called dynamic stiffness matrix
formulation. This implementation makes it easy to model beams with multi-
ple, non-identical, piezoelectric actuator or sensor patches, in asymmetric or
symmetric configurations. The analysis presented in this section is restricted
to a beam setup. A plate model is included in Appendix C.



Authors Year Ref. Beam/ Symmetric/ m/k Bonding Remarks
plate asymmetric  effects layer
Bailey and Hubbard 1985 [30] beam  symmetric no no includes experimental work
Crawley and De Luis 1987 [31] beam  symmetric no yes detailed strain-stress analysis
Crawley and Anderson 1990 [38] beam  symmetric no no
Dimitriadis, Fuller and 1991 [32] plate symmetric no no
Rogers
Kim and Jones 1991 [33] plate symmetric no yes correction of “Dimitriadis-model”
Gibbs and Fuller 1992 [34] beam  asymmetric no no on wave responses
Pan, Hansen and Sny- 1992 [39] beam  symmetric yes no
der
Charette et al. 1994 [35] beam  asymmetric  yes no Rayleigh-Ritz approach
Rivory, Hansen and 1994 [40] beam  symmetric yes no also experimental work
Pan
Park, Walz and 1996 [36] beam  asymmetric yes yes longitudinal, transverse and tor-
Chopra sional vibration
Ha and Kim 2002 [41] beam  both yes yes multimorph configuration
Lee, Gardonio and El- 2002 [42] beam  symmetric yes no triangularly shaped actuator/sensor
liott pair
This thesis beam  both yes no longitudinal and transverse vibra-
tion
This thesis plate asymmetric  no no included in Appendix C

34

Table 3.1: A selection of literature on analytical models of beams and plates with piezoelectric patches.
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3.3 Beam model

In this section an analytical model for the dynamical behaviour of beam-like
structures with surface bonded piezoelectric patches is presented. An example
of such a system is shown in Figure 3.1. It is perhaps more appropriate to call
this structure a strip rather than a beam, but the term “beam model” is used
to be consistent with the literature. The main features of the model are:

e A perfect bonding condition is assumed, which is true for thin bonding
layers with a stiffness comparable to that of the beam and piezoelectric
material [31].

e Variations along the width (y-axis) are neglected.
e Both the symmetric and asymmetric configurations are modelled.
e The mass and stiffness effects of the patches are accounted for.

Furthermore, linear piezoelectric material behaviour and small deformations
are assumed (see Section 2.4). In the following, first the equations of motion
are derived for a beam part with a single patch and with two symmetrically
bonded patches. Next, a so-called dynamic stiffness matrix formulation is
presented. With this formulation it is relatively easy to model a beam with
multiple patches.

Figure 3.1: A beam with surface bonded piezoelectric patches.



36

3.3.1 Asymmetric configuration

A piezoelectric patch can be used as an actuator or a sensor. First, the case
that the patch is a (voltage driven) actuator is considered. Subsequently, the
additional equations required to model a sensor are introduced.

Strains and stresses

The Euler-Bernoulli hypothesis is used to describe the deformation of the
asymmetric configuration. This means that a cross-sectional plane normal to
the neutral axis remains plane and normal to this axis during deformation.
A graphical representation of this assumption is shown in Figure 3.2. The
longitudinal displacement field u(x, z,t) can therefore be written as:

dw(,t)

o (3.1)

u(zx, z,t) = up(x,t) — 2
where ug(z,t) and w(z,t) are the longitudinal and transverse displacements,
respectively, of the beam mid-plane. Note that coordinate 2 is measured from
the mid-plane of the beam.

2 (3) 8wa(x, t) ;
T
Undeformed ' // Deformed
Patch Mid-plane \>/// ~ Iy
tpe . pd w(x,t)
t S -
’ z (1)
Beam | Uo (x, t)

Figure 3.2: Euler-Bernoulli displacement field.

In the rest of the analysis, the space and time dependence of the variables
is omitted. The longitudinal strain €;; associated with the Euler-Bernoulli
displacement field is given by (see Figure 3.3):

ou
611:%:60—52, (32)

!The displacements in the z- and z-directions are referred to as longitudinal and trans-
verse, respectively.
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where ¢y = Oup/Ox is the mid-plane membrane strain and x = 0%w/dx? is
the curvature. The strain variation along the thickness is thus the sum of a
uniform strain field (i.e. longitudinal component) and a linear strain field (i.e.
transverse component). Because of the strain continuity at the interface of
beam and patch, the perfect bonding condition is automatically satisfied.

Strain continuity

(perfect bond) Top electrode
1 | Y
Patch \——> ? Poling direction
x (1) Ee:n;i;z 777777777 Bottom electrode

€11 — € — RKRZ
Figure 3.3: Asymmetric Euler-Bernoulli strain distribution (eg > 0, £ < 0).

The normal stresses (in the z-direction) in the beam and patch are found with
the constitutive equations for a uni-axial stress field (see Section 2.4):

Beam : €11 = 0%y /By, (3.3a)
Patch : €11 = O‘zl)f/Epe + ds1 E3, (33b)

where 0%, and o] are the normal stresses in the beam and patch, Ej, and Ep.e
are the Young’s moduli of the beam and patch, and d3; is the piezoelectric
strain constant. It is assumed that the electric field between the electrodes on
the top and bottom surfaces of the patch is uniform:

By = (3.4)

tpe
where V' is the voltage applied across the electrodes and t,. is the patch
thickness. Instead of using this assumption, the electric field can also be
solved from Maxwell’s law. The resulting electric field is the sum of a uniform
part, as in equation (3.4), and a linear part, which is proportional to the
curvature k. It is shown in Appendix B that the contribution of the linear
part to the electric field is negligible. For this reason the assumption of a
uniform electric field is used.
Equations (3.2), (3.3) and (3.4) can be combined to:

ot = Ey(e0 — k2), (3.5a)
ol = Epe(€o — Kz + €pe) , (3.5b)
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where
_dynV

€pe =

(3.6)

tpe
When a voltage V' is applied to an unconstrained patch (i.e. not bonded), the
resulting longitudinal strain is equal to €p.. This quantity is referred to as the
free piezoelectric strain.

z(3) ro-mcmooo- I )
Patch | —> : :44— ;:
I I I I
L» o
z(1)  Beam | /4 LA l
R R H
Strain Stress

Figure 3.4: Assumed strain and stress distributions (E, > Epe).

As a result of the strain continuity at the interface of the beam and patch, the
stress will show a discontinuity at the interface if the Young’s moduli of the
materials are different (see Figure 3.4). The discontinuity is also created by
the “external” stress caused by epe.

Normal force and bending moment

The internal normal force N and bending moment M are found by integration
of the stresses over a cross section:

ty/2 ty/2+tpe
N = bb/ oty dz + bpe/ ot dz, (3.7a)
—tp/2 /2
tb/2 tb/2+tp5
M = —bb/ 0% zdz — bpe/ ol zdz. (3.7b)
—tp/2 ty/2

where t;, is the beam thickness, by, is the beam width, and b, is the patch width.
After substitution of equations (3.5), the following relation is obtained:

{ N } |:Eb1 1b Epei 1pe Epere :| {60} { Epei 1pe } € (3 8)
M pere Eblb Epelpe K Epere < .
where

byt?
Ay = byt [ = 20t
b blb b 12’

2 tylpe 13 belpe(ty +t
Ape = Opelpe; Ipe = Opelpe <Zb + 2pe + % ) Qpe = e | Pes p8(2 pe).
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The off-diagonal terms in the matrix in equation (3.8) are the result of the
setup being non-symmetric with respect to the x-axis.

Essentially, the foregoing formulation is valid only if the beam and patch
are infinitely long. In practice the patch only partially covers the beam. The
stress distribution shown in Figure 3.4 does not hold near the free edges of the
patch since the equilibrium conditions require the normal stress to be zero at
an edge. However, the stress field is unaffected up to a small distance from
the edge, which is of the order of the patch thickness. Therefore, if the length
of a patch is large compared to the thickness, the stress field is valid in the
largest part of the actuator, and edge effects can be neglected.

From this point, it is assumed that the beam width and patch width are
constant along the length (i.e. independent of x). Then, a voltage applied to
the patch induces a normal force and a bending moment, which are uniform
within the edges of the patch (no edge effects). The loading induced by the
patch can be seen to be equivalent with two equal and opposite normal forces
(z-direction) and two equal and opposite bending moments. The magnitudes
of the normal forces and bending moments are proportional to the applied
voltage. If the patch width varies along the x-direction, transverse loads are
also induced by the patch [4, 42].

Equations of motion

The mechanical equilibrium in the longitudinal and transverse directions of an
infinitesimal part of the beam with patch is given by (no external mechanical
loads):

0%up Bw ON
(oA)ea g~ e~ oy = (39)
Pw  9*M
(pA)qu + W = 0, (39}))

where (pA)eq = ppAp + ppeApe is the mass per unit length. The rotary inertia
is neglected in equation (3.9b). Substitution of equations (3.8) into the above
set gives the following result:

9%up Pw 9%up DBw

(pA)qu - PpereW - (EA)qu + Eperew == 0, (310&)
62w 83u0 84’UJ
(pA)qu - Ep@QpeW + (EI)eq@ - 0, (310b)

where (EA)eq = EpAp+ EpeApe and (E1)eq = Eply+ Epelpe. 1t is important to
note that because of the assumption of a constant beam and patch width, there
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are no right hand side terms related to the piezoelectric strain €,.. The load
induced by the patch is introduced in the model with the boundary conditions.

Equations (3.10) clearly indicate that the longitudinal and transverse vi-
brations are coupled. For sound radiation (and ASAC) the transverse vibra-
tion of the structure is of interest. If only a small part of the beam is covered
with patches, a good estimate for the transverse vibration at low frequencies
is obtained when the normal force is set to zero (see Appendix B). In this
way the coupling between the longitudinal and transverse vibrations vanishes.
When the normal force is set to zero, the equations of motion (3.10) reduce
to a single equation in terms of the transverse displacement:?

0*w . Otw
(pA)qu + (El)eqw = 07 (311)
where
(EpeQpe)”
(EDe, = (El)eq — . (3.12)
4 0 (BEA)y

Surface charge

So far the analysis was restricted to the case of an actuator patch. The ad-
ditional equations required to model a sensor patch are given here. It is
common to use the charge produced by the patch as the sensor signal. The
surface charge @) on the top electrode is found by integration of the electric flux
density D3 over the electrode area. The electric flux density is related to the
mechanical deformation and piezoelectric strain by means of the constitutive
equation (see Section 2.4):

D3 = d31Epe €11 +€%5(1 — k3,) B3, (3.13)

where €45 is the dielectric constant and k3; = d31+/Epe/€3s is the electrome-
chanical coupling factor. For an Euler-Bernoulli strain field and a uniform
electric field, equation (3.13) becomes:

E,.Q 0%w 1—-k%3, EA
D3 = ds1 Epe peepe — 31 pe-pelc . 14
o=t | o | 5 - | 2, e e

In this equation the longitudinal strain component ¢y has been eliminated on
the assumption that the normal force is zero. It was previously assumed that

2By demanding N = 0, €, can be eliminated from equation (3.8). Equation (3.11) is found
when the resulting expression for the bending moment is substituted into equation (3.9b).
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the electric field is uniform across the patch. As a consequence Maxwell’s
equation is not satisfied: the electric flux density varies across the thickness
of the patch (see equation (3.14)). Therefore, the surface charge @) is defined
as the integral of the average electric flux density:

lpe tb/2+tpe
Q= bpe/ / Dsdz | dx. (3.15)
0 ty/2

3.3.2 Symmetric configuration

In the symmetric configuration two patches are bonded symmetrically on op-
posite sides of the beam. In the analysis that follows, indices O and O refer
to the patches on the top and bottom sides, respectively. The symmetric con-
figuration is mainly attractive as an actuator, although it is also possible to
use one patch as actuator and the other patch as sensor (see Chapter 6). The
case that both patches serve as actuator is considered here.

It is assumed that the two patches have equal length, thickness and ma-
terial properties. The normal force N and bending moment M for an Euler-
Bernoulli strain field are:

{N} _ [(EA)Zq 0 :| {60} + { EpeApe (epeD - 6peD) } (3 16)
M 0 (Ej)gq K _Epere (EpeD + 6pe|:|) ’

where €,.0 = d31Vq /tpe and €pen) = d31Vp /tpe are the free piezoelectric strains
of the top and bottom patches, respectively, and:

(BA)S, = EyAp + 2EpeApe |
(ED)Sy = Eyly + 2Epel e

The equations of motion for the longitudinal and transverse vibrations of the
symmetric configuration are given by:

. 0%u . 0%u
(P 5 ~ EA) 7y =0, (3.17a)
s 0%w s 0w
(pA)qu + (EI)eq@ =0. (317b)

It has again been assumed that the beam and patch widths are constant
along the beam. Equations (3.16) and (3.17) show that, in contrast to the
asymmetric configuration, now the longitudinal and transverse vibrations are
decoupled. As a result, it is possible to excite these vibrations independently.
In Figure 3.5 the “in-phase” and “out-of-phase” excitation mechanisms are
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compared. In the case of in-phase excitation, both patches extend at the same
time by the same amount. As a result, only the longitudinal vibration is ex-
cited. On the other hand, if the extension of one patch is accompanied by the
same amount of contraction of the other patch, the excitation is out-of-phase.
In this case only the transverse vibration is excited. As indicated by equa-
tion (3.16), opposite free piezoelectric strains (€. = —€,er) result in in-phase
excitation and equal free piezoelectric strains result in out-of-phase excitation
(€pert = €pen)- For any other combination of the two, both the longitudinal
and transverse vibrations are excited. It is noted that the longitudinal and
transverse vibrations are no longer decoupled if the two patches do not have
equal length, thickness or material properties.

“ (3) “ (3) Patches
tpe A A
=2 | = . O A
L — /
22 d ] > \L >
- B z (1) £ £ o z(1)
tpe . Beam
Strain Stress Strain Stress
(a) In-phase. (b) Out-of-phase.

Figure 3.5: (a) In-phase (epen = —€pen) and (b) out-of-phase (epen = €pen)
excitation mechanisms in the symmetric configuration.

3.3.3 Dynamic stiffness matrix method

The beam model is implemented using a dynamic stiffness matriz (DSM)
formulation. This formulation is attractive for the current problem because it
is easy to combine beam parts with a surface bonded patch and “regular” beam
parts, i.e. without a patch. The DSM method is quite similar to what in the
literature is called the spectral element method [43, 44, 45, 46]. In the spectral
element method the frequency domain solution is subsequently transformed to
the time domain using the fast Fourier transform. In the present study, only
frequency domain simulations are considered.

A schematic representation of the DSM method is shown in Figure 3.6.
In this example a beam with two asymmetric bonded patches is considered.
The model consists of five elements, and each element has two nodes. For
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Patches
Beam % \ o+
2 —— — 1 N
System == T T N
Element Electrical BCs Coupling conditions
DSM model éﬂ %U
Node Mechanical BCs
Nodal DOF/loads
DSM elements *———e ——o
Beam with Beam

patch

Figure 3.6: Schematic representation of the DSM method.

each element, the displacement and rotation at the nodes (nodal degrees of
freedom) are related to the force and moment at the nodes (nodal loads) by
means of a frequency dependent matrix, the so-called dynamic stiffness matrix.
The exact solution of the governing equation of motion is used to create such
an element matrix. Elements are coupled with the continuity and equilibrium
equations at the nodes, resulting in a system matrix. Together with boundary
conditions and external loads (i.e. structural and/or electrical) the system can
be solved to obtain the frequency response of the nodal degrees of freedom.

The DSM method is, to some extent, similar to the finite element method.
In both cases the structure is divided into a number of elements. However,
the shape functions that are used to describe the spatial dependence of a
variable are different. In finite element formulations linear or quadratic shape
functions are often used, whereas in the DSM method the exact solution is
used. Therefore, the DSM method does not require a minimum number of
elements per wavelength. As a result the system matrix remains small. A
drawback is that the exact solution must be available. This condition limits
the DSM method to simple wave propagation problems, such as beams, for
which the exact solution is available.?

3The DSM method can also be used for other one-dimensional problems, such as acoustic
wave propagation in tubes [2].
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The element matrix for a beam with one surface bonded patch is derived
in Appendix B. Here only the result is given:

e v -{e) .

where w is the vector with nodal displacements and rotations, f is the vector
with nodal forces and moments, V' is the voltage across the electrodes of the
patch and @ is the charge on the electrodes. It is noted that in the element
matrix, only K is frequency dependent. The components of ki and kog are
constant. This is in correspondence with the quasi-static field assumption in
the derivation of the basic equations for piezoelectricity (see Section 2.4).

Two beam parts can be coupled by demanding continuity of displacement
and rotation, and force and moment equilibrium in the node that is shared
by the two parts. The derivations of the element formulations for other beam
parts (e.g. no patch or symmetric configuration) is similar to the analysis
presented in Appendix B.

Actuator/sensor reciprocity

Because the element matrix given in equation (3.18) is symmetric, a duality
exists between actuation and sensing with a piezoelectric patch. This duality is
shown in Figure 3.7 for a single element with simply supported end conditions.
The load on the structure induced by a voltage is equivalent with a pair of
opposite bending moments at the supports. When the patch is used as a
charge sensor, i.e. the electrodes are short circuited (V' = 0), the charge
on the electrodes for some deformed shape is proportional to the difference
between the slopes at the beam edges.

Actuator Sensor

d3y

(6o +01)

d
M = EpeQpe (1 —7) t31 Vv Q= EpeQpe (1 —7)

pe tpe

Figure 3.7: Reciprocity between actuation and sensing (7 = Epe Ape/(EA)eq)-

It is important to note that this interpretation of a piezoelectric actuator and
sensor is valid only for a patch with a constant width. If for instance the
width varies along the beam, then transverse forces are also introduced by an
actuator [4], but the reciprocity between actuation and sensing remains.
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3.4 Modal behaviour

In this section the modal behaviour of a beam with one surface bonded piezo-
electric patch is considered. The setup is shown in Figure 3.8 and the model
parameters are given in Table 3.2. In the following, the influence of the mass
and stiffness of the patch on the eigenfrequencies is considered. It is further-
more shown how the eigenfrequencies depend on the type of electrical bound-
ary condition on the electrodes (short circuit or open circuit). The DSM model
of the setup consists of three elements. Clamped boundary conditions are ap-
plied at the beam ends. The eigenfrequencies have been determined with a
numerical scheme for solving the characteristic equation det(Kgys) = 0, where
Kys is the system matrix. Because no damping is included in the model, the
eigenfrequencies are real numbers.

Open or
short circuit_o/ t
pe ty
M 1 ! { .
4 — —1 N
Zl — ' g A N
>
lb/2

Figure 3.8: A beam clamped on both sides with one surface bonded patch.

Beam Patch
I 0.49 m bpe 0.03 m
by 0.03 m Ppe 7760 kg/m3
ty, 1.2-107%2 m Epe 59.5-10% N/m?
b 2710  kg/m3 dz;  —2.14-1071 m/V
Ey 70-10° N/m? €95 1.87-107% F/m

Table 3.2: Model parameters (see Figure 3.8). The length [, and thickness .
of the patch vary per analysis.

3.4.1 Mass and stiffness effects

The effects of mass and stiffness are demonstrated by varying the thickness
and length of the patch. The patch is subjected to a short circuit boundary
condition (V' = 0). In Figure 3.9(a) the relative change of the eigenfrequencies
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of the first five modes is shown as a function of the normalised patch thickness
tpe/ts. The patch length is one fifth of the beam length (I, = [;/5). The
relative change of an eigenfrequency f,, is defined as (f,,, — %)/ f%,, where f2 is
the eigenfrequency of the beam without patch and m is the mode number. Not
surprisingly, thicker patches result in a bigger change of the eigenfrequencies.

A surface bonded patch introduces both mass and stiffness effects. The
mass effect results in a decrease of the eigenfrequency, whereas the stiffness
effect results in an increase of the eigenfrequency. The mode shapes are helpful
for understanding which of the two effects is dominant.

40 16

)/ fn %]

b
m

(fm_

0 0.5 1 15 2 0.1 0.2 0.3 0.4 05
tpc/tb H lpe/lb H
(a) Variation of patch thickness. (b) Variation of patch length.

Figure 3.9: Eigenfrequency variation as a function of (a) the patch thickness
(Ipe = lp/5) and (b) the patch length (t,. = t,/2), where m is the mode number.

In Figure 3.10 the first four mode shapes of the beam with patch and those
of the beam without patch are compared. In the case of the first mode,
the location of the patch corresponds to a region where the displacement of
the mode shape is high. Because the wavelength associated with the first
mode is large compared to the patch length, the mass effect is dominant.
Therefore, in Figure 3.9(a) the first eigenfrequency decreases with increasing
patch thickness. In the case of the third mode, the patch is also in a region
with high displacement. However, because the wavelength of this mode is
close to the patch length, the stiffness effect is dominant for this mode. As a
consequence, the corresponding eigenfrequency increases with increasing patch
thickness. For the second and fourth modes, the location of the patch is close
to a nodal line. Again the mass effect is dominant, although the relative
decrease of the corresponding eigenfrequencies is less than for the first mode.
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It is stressed that the shape of the curves in Figure 3.9(a) strongly depends
on the length and location of the patch.

Mode 1

Figure 3.10: Comparison of the first four mode shapes of a beam without patch
(—) and a beam with patch (---=-) (Ipe = /5, tpe = tp)-

A similar argumentation can be given for the results shown in Figure 3.9(b),
where the relative change of the eigenfrequencies is shown as a function of
the normalised patch length [,./l,. Again the change of the eigenfrequencies
is significant. The eigenfrequencies are not shown for very small patches,
because the model is only valid for t,./l,e < 1. As the length of the patch
is increased, the relative importance of the mass and stiffness effects changes,
which explains the shape of the curves. Because higher modes have shorter
wavelengths, the “waveness” of the curves increases with the mode number.

3.4.2 Piezoelectric coupling effect

In Section 2.5 the effect of piezoelectric coupling was demonstrated for the
longitudinal vibration of a piezoelectric bar. It was found that the eigenfre-
quencies depend on the piezoelectric and dielectric material properties and
on the electrical boundary conditions. The effect of piezoelectric coupling is
considered here for the beam setup shown in Figure 3.8.

The top electrode is divided into two separated parts, i.e. there is no direct
electrical contact between the two parts. One part is subjected to a short
circuit electrical boundary condition (V' = 0) and the other part is subjected
to an open circuit boundary condition (@ = 0).

In Figure 3.11 the relative change of the eigenfrequencies is shown as a
function of the normalised length of the short circuited electrode I, /lpe. Note
that the cases l;./l,e =0 and 5./l = 1 correspond to setups with a single
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Figure 3.11: Eigenfrequency variation as a function of the length of the short

circuited electrode.

electrode with an open circuit and short circuit, respectively. The relative
change of an eigenfrequency f,, is defined as (f,, — f5)/f5,, where f2 is the
eigenfrequency of mode m for [, /l,e =1 (short circuit). The variation of
the eigenfrequencies is very small compared to the mass and stiffness effects
discussed previously (< 1.5%). Therefore the piezoelectric coupling effect is
only weak for a beam with a surface bonded patch.

3.5 Active structural acoustic control

In this section a basic analysis of ASAC is presented for a strip with surface
bonded piezoelectric actuator patches. In this context a strip is a plate with an
infinite length in one direction. The structural response of the strip is obtained
with the model presented in Section 3.3. The concept of ASAC is presented
for two different disturbance sources which are considered to be representative
for structural and acoustic excitation of the strip. The results emphasize the
difference between ASAC and active vibration control (AVC). More thorough
discussions on this subject can be found for instance in references [8, 9, 11]
and the book of Fuller [10].

3.5.1 Optimal control

In the present analysis a highly idealised control system is used. The control
problem is formulated as to find the control input (i.e. actuator voltage) which
minimises a given quadratic error criterion. A detailed outline of this control
approach can be found in Chapter 5. In this section the method is only briefly
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discussed. The main assumptions are that the overall system is linear (i.e.
structural, electrical and acoustical) and that all signals are in steady state so
that the effect of control can be considered on each frequency independently.

To illustrate the difference between ASAC and AVC, two error criteria
are used. The first error criterion is the radiated sound power, which is a
convenient measure for free field sound radiation. A numerical method for
calculating the radiated sound power is presented in Chapter 4. The resulting
expression for the radiated sound power W is:

W=vIiRv,, (3.19)

where v,, is the vector with velocities in the transverse direction at discrete
points on the strip (normal velocity), and R is the so-called radiation resistance
matriz (see Section 4.3.1). Note that vl denotes the complex conjugate and
transpose of v,, (Hermitian).

The second error criterion is a measure for the strip vibration in the trans-
verse direction. This criterion, which will be called the wvibration level, is
defined as the space and time average of the squared normal velocity of the
strip. In discrete form, the vibration level < ©2 > is given by (see Chapter 4):

<72 >=vINv,. (3.20)

It is assumed that the strip is excited by a single disturbance source with
amplitude f; (e.g. point force), and that a single actuator patch with voltage
V. is available for control. With the system being linear, the normal velocity
of the strip can be written as:

v, =hg fg+h. V.. (3.21)

where hy and h. are vectors whose elements are the frequency response func-
tions from the disturbance input and control input, respectively, to the normal
velocity at each point on the strip.

Both error criteria are quadratic in terms of the normal velocity vector v,
and can be written in the general form:

J=viwyvy,. (3.22)

The control input that minimises this quadratic error criterion is given by (see
Chapter 5):

v — — (W h,) T b Why fy, (3.23)

provided that h?W h. is not singular. The optimal control input V™" is
substituted into equation (3.21) for the strip vibration in order to evaluate
the control performance (e.g. in terms of radiated sound power or vibration
level).
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3.5.2 Setup

The system that is studied consists of a baffled strip which is clamped on both
sides. As a first step, one piezoelectric actuator patch is bonded to the strip.
Two different disturbances are considered, which are shown in Figure 3.12.
First, the strip vibration is induced by a point force that is considered to be
representative of a structural disturbance. Second, an acoustic plane wave
incident on the strip at an oblique angle is taken as the disturbance.

Z .
x  Actuator patch t 1, Baffle pm% N %

= V7727

v v
77722 —
o X
Tpe S
%q'% trip ﬁ\%
Radiated field
(a) Point excitation. (b) Plane wave excitation.

Figure 3.12: A baffled strip with one actuator patch excited by (a) a point force,
or (b) a plane wave. The setup is infinitely wide in the direction perpendicular
to the (z, z)-plane.

The dimensions and material properties of the beam and the material prop-
erties of the patch are given in Table 3.2. The length and thickness of the
patch are 50 mm and 1.0 mm, respectively. The offset between the left ends
of the beam and patch is zp. = 85 mm (see Figure 3.12(a)). No attempt has
been made to optimally configure the actuator; the choice of the location and
size is made on an ad-hoc basis. The acoustic medium surrounding the strip
is air (pg = 1.2 kg/m?® and co = 343 m/s). Note that all results presented in
the following sections are calculated per unit width.

3.5.3 Structural excitation

The disturbance is a transverse point force applied at z = 0.3 m with an ampli-
tude fy = 1.0 N/m.* The optimal actuator voltage is calculated for the struc-
tural error criterion J =< 92 > and for the acoustic error criterion J = W. In
Figures 3.13 and 3.14 the corresponding vibration levels and radiated sound
powers are shown for the frequency range from 10 to 1000 Hz. The vibration

4Tn fact the force is a line force because the strip is infinite in one direction.
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level and radiated sound power for a strip without patch are also included in
the results.

— No control |
s J =<l >
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Figure 3.13: Vibration level with and without control for point force excitation.
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Figure 3.14: Sound power with and without control for point force excitation.

In Figure 3.13 the “dash-dotted” line (J =< o2 >) corresponds to the best
possible reduction of the vibration level for this location of the patch (and
point force). On the other hand, in Figure 3.14 the “dashed” line (J = W)
corresponds to the best possible reduction of the sound power.

The results illustrate that ASAC is not simply a matter of applying AVC.
When the actuator is driven such that the sound power is minimised, the
vibration level is even increased at certain frequencies, when compared with
the vibration level without control. A reduction of the vibration level leads
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to a reduction of the radiated sound, but the performance is by no means
optimal.

For both error criteria, control is more effective at low frequencies, although
the response near the higher resonance frequencies is reduced. The number of
vibration modes contributing to the response in off-resonance regions increases
with frequency. In general only one vibration mode can be suppressed with
one actuator, hence the overall reduction in off-resonance regions is less at the
higher frequencies.

No control

= =
[} [}
£ £
8 8
= =
2, 2,
A A
J=<v;> No control
0 02 0.4 0.6 038 1 0 02 0.4 0.6 038 1
z/ly [] z/ly [-]
(a) On-resonance: f = 135 Hz. (b) Off-resonance: f =99 Hz.

Figure 3.15: (a) On-resonance and (b) off-resonance vibration shapes, with and
without control.

In Figure 3.15(a) the vibration shapes with and without control are shown for
a frequency of 135 Hz. This frequency is very close to the third resonance fre-
quency, which makes these vibration shapes correspond to an “on-resonance”
excitation. For both error criteria a decrease in the vibration amplitude is
observed, but the reduction is more significant when the vibration level is
minimised. Near a resonance frequency the strip response is dominated by a
single vibration mode. The reduction of sound radiation is obtained by sup-
pressing the participation of the dominant mode. This mechanism is referred
to as modal suppression [9, 10].

In Figure 3.15(b) the vibration shapes are shown for a frequency of 99 Hz,
which corresponds to an “off-resonance” excitation. In an off-resonance region
several vibration modes contribute to the sound radiation. In the case of
minimisation of the radiated sound power, the response is changed such that
the resulting vibration shape is a less efficient sound radiator. As shown in the
figure, this may even result in an increase of the vibration. This mechanism
for off-resonance sound radiation control is called modal restructuring [9, 10].
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The frequency range considered here is well below the coincidence fre-
quency. At the coincidence frequency the structural wavelength in the strip is
equal to the acoustic wavelength in the direction along the strip. Well below
coincidence, the acoustic wavelength is much larger than the the structural
wavelength. As a result, so-called volumetric vibration shapes (e.g. the odd
modes) are much better radiators than non-volumetric vibration shapes (e.g.
the even modes). It is therefore no surprise that the vibration shapes associ-
ated with the minimisation of radiated sound power are non-volumetric, both
on-resonance and off-resonance.

3.5.4 Acoustic excitation

The pressure associated with an acoustic plane wave travelling in free space is
given by:

p(l‘, Z) = Din e—jk(xsin(a)—zcos(a)) ’ (3'24)

where k = w/cy is the acoustic wave number with ¢y the speed of sound,
Pin is the amplitude of the wave, and « is the angle between the direction of
propagation and the z-axis (see Figure 3.12(b)). Under the assumption that
the fluid loading is small, the pressure on the strip can be described by the
so-called blocked pressure [47]. The blocked pressure is the surface pressure on
a rigid strip which totally reflects the incident wave. The disturbance load on
the strip is therefore twice the incident pressure and is given by:

f(x) = —2py, e Ihrsin@) (3.25)

A convenient measure for sound transmission problems is the transmission
loss T'L, which is here defined as:

Win
TL = 10 log;, ( = > : (3.26)

where W is the radiated sound power and W, is the incident sound power,
which is defined as:

2
o Il o
0C0

where pg is the density of the acoustic medium. The first term on the right
hand side of this equation is the power associated with the incident plane
wave. The radiated sound power is added to ensure that the transmission loss
is a positive number, which is a physical constraint (see Basten [3]).



— No control 5ot — No control
= = J =<2 > 0 s ] =<2 >
=107 — =1 < a0t — =
— )
= 8
. = 300
£ 0% g
© 2
2, £ 20 -

) g
2 1078 a
= 10 '+ = B
[} © 10
o =

-8

10 0
10' 10° 10° 10' 10° 10°
Frequency [Hz| Frequency [Hz|

Figure 3.16: Radiated sound power (left) and transmission loss (right) with and
without control for plane wave excitation (p;, = 1, a = 7/4).

Again the vibration level and the radiated sound power are used as error
criteria. Figure 3.16 gives the results with and without control for an incident
plane wave with p;, = 1 and a = 7/4. Both the radiated sound power and
the transmission loss are shown. The results for the radiated sound power
are similar to those obtained for structural excitation (see Figure 3.14). That
is, the reduction of the radiated sound power is far from optimal when the
vibration level is minimised.

The transmission loss that is obtained if no control is applied is typical
for bounded plate structures below coincidence. There is an average increase
with frequency for frequencies above the first eigenfrequency, and small dips
occur at the higher resonance frequencies. It can be observed that with the
current setup, i.e. with one actuator patch, the control of sound radiation is
effective in a limited frequency band. As will be shown in the next section,
more actuators must be applied to obtain better performance.

3.5.5 Multiple actuators

To illustrate the effect of using multiple actuators, a comparison is made be-
tween the control performances obtained with one, two and three actuator
patches. Only the control of radiated sound power is considered (J = W).
The patches have equal dimensions (I, = 50 mm, t,. = 1.0 mm). The offsets
between the left end of the beam and the left ends of the patches are 85 mm,
220 mm and 355 mm respectively. Note that three different DSM models are
used.

In Figure 3.17 the sound power and transmission loss are shown for each of
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Figure 3.17: (a) Radiated sound power for point force excitation and (b) trans-
mission loss for plane wave excitation for one, two and three control actuators.

the three configurations. The results show a clear improvement of the control
performance if more actuators are used. That is, with more actuators larger
reductions of the sound power and higher transmission losses are obtained.

Although the results are very promising, one should be aware that the
system under consideration is highly idealised. The setup comprises a two-
dimensional sound radiation problem, whereas real-life problems are three-
dimensional. Real-life structures are characterised by higher modal densities
than the current test problem. As a result, the control performance is limited
to frequencies much lower than for the results shown in Figure 3.17. Besides,
the error criteria that were considered are far from practical. A quantity such
as the radiated sound power is not easily measured in practice. The use of
a small number of discrete sensors, e.g. microphones, will certainly degrade
the performance. These and other issues will be considered in more detail in
Chapters 5 and 6.

3.6 Concluding remarks

In this chapter a model for the dynamical behaviour of a beam with surface
bonded piezoelectric patches was presented. The most important features of
the model are that a perfect bonding condition between the beam and a patch
is assumed and that the mass and stiffness of a patch are accounted for. The
dynamic stiffness matrix formulation was used to implement the model. This
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implementation makes it possible to model beams with multiple piezoelectric
actuator and sensor patches, in asymmetric or symmetric configurations.

It was demonstrated for a setup consisting of a beam with one surface
bonded patch that the mass and stiffness of the patch can be of significant
influence on the modal behaviour of the structure. When a large part of the
structure is covered with piezoelectric material (e.g. multiple small patches)
these effects must be included in the model to obtain an accurate prediction of
the dynamical behaviour. The added stiffness introduced by the piezoelectric
coupling is of minor importance for surface bonded patches and can therefore
be neglected.

A preliminary study of ASAC was presented for a test problem consisting
of a plate that is infinitely long in one direction with one or more actuator
patches. The effect of optimal control was considered for two error criteria: one
related to the structural response (vibration level) and the other related to the
acoustic response (radiated sound power). It was demonstrated that ASAC is
not simply a matter of applying AVC. In the off-resonance frequency ranges,
control of radiated sound power can even be accompanied by an increase in
vibration. Because the problem concerns a highly idealised structure and
control system, the control performances that were found for the test problem
must not be expected in practice.



Chapter 4

Numerical Modelling and
Experimental Validation

4.1 Introduction

In the previous chapter an analytical model was used in a basic study of ac-
tive structural acoustic control (ASAC). Analytical models are very useful for
studying the underlying physics but are generally not suitable for represent-
ing “real life” structures with complex geometries and boundary conditions.
A more advanced modelling technique is considered in this chapter. The goal
is to develop an analysis tool which can serve as a basis for the design of an ac-
tive control system. This tool is capable of describing the structural dynamics
of plate-like structures with piezoelectric patches and the corresponding free
field sound radiation. The analysis tool is validated with experiments.

Structural model Acoustic model
—»
Piezoelectric FEM Rayleigh integral
Normal
surface velocity

Figure 4.1: “Uncoupled” structural-acoustic analysis.

A vibrating structure which is surrounded by an acoustic medium causes pres-
sure perturbations in the medium, which are experienced as sound. On the
other hand, the pressure perturbations in the acoustic medium act as a load
on the structure. When the medium is air, which is assumed in this work,
the influence of the medium on the structural vibration can be neglected. It



58

is therefore allowed to perform an uncoupled analysis of the structural and
acoustic responses, which is illustrated in Figure 4.1.

In the first part of the analysis, the structural vibration response due to
one or more inputs acting on the structure is calculated. The finite element
method (FEM) is used to model the dynamical behaviour of the structure and
the piezoelectric patches bonded on the structure. This model is referred to
as the structural model.

In the second part of the analysis, the free field sound radiation associ-
ated with the structural vibration is calculated. The normal surface velocity
distribution calculated with the structural model is used as an input for this
analysis. In the present work, the analysis is restricted to baffled plates for
which the Rayleigh integral method can be applied. This model is referred to
as the acoustic model.

For both the structural model and acoustic model, reduction techniques
are applied in order to reduce computation time. In the case of the struc-
tural model the reduction is based on a superposition of the structural modes,
whereas for the acoustic model a superposition of so-called radiation modes
is applied. Furthermore, the governing equations are transformed to a state
space representation, which is very often used for control system design.

It is stressed that the “open-loop” system is considered in this chapter.
This means that the numerical and experimental results do not involve an
active control system. The application of the analysis tool for ASAC will be
considered in later chapters.

This chapter is divided into three parts. In Section 4.2 the structural model
is discussed. The piezoelectric finite element equations are introduced and a
modal reduction method for these equations is presented. Next, in Section 4.3
the acoustic model is presented. For baffled plate structures the Rayleigh inte-
gral can be used to calculate the field pressure and the radiated sound power.
The calculation of the radiated sound power can be performed more efficiently
using a superposition of radiation modes. In Section 4.4 the numerical method
is validated with experiments. The experimental setup consists of a clamped
rectangular plate with two surface bonded PZT patches. A comparison of
numerical and experimental results is given for the structural and acoustic
domain.
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4.2 Structural model

4.2.1 Piezoelectric FEM equations

The finite element modelling of plates and shells with surface bonded or embed-
ded piezoelectric patches has received considerable attention in recent years.
As a result, a large number of finite element formulations have been developed
and published, as described in the review article of Benjeddou [48]. Nowadays
commercial finite element codes are equipped with elements with piezoelectric
capabilities.

The finite element equations of motion for a structure exhibiting linear
piezoelectric behaviour are given by:

At it S it i

where u(t) is the vector with nodal structural displacements, and ¢(t) is the
vector with nodal voltages. Matrices My, C,., and K, are the structural
mass, damping and stiffness matrices, respectively. The piezoelectric coupling
is represented by the piezoelectric stiffness matrices K4 and Ky, = KE¢, and
Ky is the dielectric stiffness matrix. The external loads are stored in the
vector with nodal forces f(t) and the vector with nodal charges g(¢). In equa-
tion (4.1) no distinction is made between the structure and the piezoelectric
material. Obviously, the piezoelectric stiffness matrix and dielectric stiffness
matrix are zero in the structure. The basic equations for the derivation of the
piezoelectric FEM formulation were introduced in Section 2.4. Quasi-static be-
haviour of the electric field was assumed there, which explains why the mass
and damping matrices in equation (4.1) do not contain contributions related
to the electric field.

The basic idea is to obtain a state space representation of the FEM model
which can serve as a basis for the design of a controller. In general, a FEM
model must include many degrees of freedom (DOF) in order to obtain an
accurate prediction of the dynamical behaviour. A model with a large number
of DOF is not really suited for the design of a controller, as its evaluation
requires considerable computational effort. For this reason a model reduction
technique is applied to reduce the number of DOF in the model. The method is
similar to the mode superposition technique. The mode superposition method
is often used in the field of structural dynamics, but is applied here for the
piezoelectric finite element formulation. The result is a compact dynamical
model, which can be evaluated with little computational effort.
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A piezoelectric material can be used either to excite a structure, i.e. as a
voltage or charge driven actuator, or to measure vibration, i.e. as a voltage or
charge sensor. To make the reduction method applicable for all those cases, a
distinction is made between two types of electrodes:

e Electrodes with a prescribed voltage, which applies for voltage driven
actuators and charge sensors (short circuit).

e Electrodes with a prescribed charge, which applies for charge driven ac-
tuators and voltage sensors (open circuit).

The vector with nodal voltages and the vector with nodal charges are divided
according to this subdivision of electrical boundary conditions:

¢”(t)} {g“(t)}

t) = , t) = , 4.2
s0={50} w0 ={&0 42)
where the superscript v refers to prescribed voltage and the superscript c refers
to prescribed charge. Note that ¢"(t) and g©(t) are given inputs to the system,
whereas ¢°(t) and g"(t) are outputs of the system. The electrical DOF of
nodes which are not on an electrode surface are handled as prescribed charge

DOF, with g¢(t) = 0. With the distinction between prescribed voltage and
charge DOF, the equation of motion (4.1) becomes:

Muu 00 u(t) Kuu KZ(b KZ¢ u(t) ft)
0 0 0|4 () p+...+ Ky, Ky Ki|g'(t) o =g'(t)
0 0 0] Lo (1) Kg, Ky Kisl Lo°(t) g°(t)

For ease of writing the damping forces have been omitted in this equation. In
the mode superposition method the response is written in terms of the eigen-
modes of the system. In order to perform an eigenvalue analysis, the nodal
voltages @°(t) are condensed from the system. The third row in equation (4.3)
can also be written as:

¢°(t) = (K%) " [-KS, u(t) — K, ¢* (1) +g°(1)] - (4.4)

Substitution of this equation into the first row in equation (4.3) gives an
equation of motion in terms of the structural displacement vector u(t):

My () + Cuy u(t) + Ki, u(t) = £5(2) (4.5)
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where the equivalent stiffness matrix K7, is given by:
K = Ko Ky (KE)
and the equivalent force vector f*(t) is defined as:

£4(t) = £(t) — K5 " () — K&y (K5,) ™

-1

-
bu > (4.6)

g°(t), (4.7)

where KZ’(; =K/ 6~ K¢, " (Kqud)) K% This equation shows that the electrical
inputs ¢"(t) (prescribed voltages) and g(t) (prescribed charges) are written
as equivalent structural loads. Once the structural displacement vector has
been solved from equation (4.5), the voltages in the nodes with a prescribed
charge boundary condition, ¢°(t), can be calculated with equation (4.4). The
charges associated with the set of prescribed voltages, g”(t), can be calculated
as follows:

g (1) = Ky u(t) + Kiy o' (1) + KU (K) ' ee(t), (4.8)

where K7, = (K;;;)f e (Ke) 'K, This result is ob-
tained after substitution of equation (4.4) into the second row in equation (4.3).

4.2.2 Model reduction

In the present approach the response is expanded in terms of the undamped
eigenvectors of the problem. When the undamped free vibration is consid-
ered (f*(t) = 0), and harmonic time dependence is assumed (u(t) = uel“?),
equation (4.5) reduces to the generalised eigenvalue problem:

WM, u=K*, u, (4.9)

where w is the angular frequency of vibration. The solution of this eigenvalue
problem comprises n angular eigenfrequencies w; and corresponding eigenvec-
tors w; (i = 1...n), where n is the total number of structural DOF in the
model. It was already shown in the previous chapters that the eigenfrequen-
cies and eigenmodes (mode shapes) depend on the type of electrical boundary
conditions. In equation (4.9) this effect is accounted for in the equivalent
stiffness matrix K}, see also equation (4.6). Only the electrical DOF with
a prescribed charge boundary condition contribute to the equivalent stiffness
matrix. The amount of change in stiffness (or a related property such as eigen-
frequency) due to the piezoelectric coupling depends on the type of problem.
In Section 2.5 it was shown that the piezoelectric coupling effect is signifi-
cant for the longitudinal vibration of a piezoelectric bar. However, it was
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concluded in Section 3.4 that the effect is negligible for a beam with surface
bonded piezoelectric patches.

The matrix with eigenfrequencies €2 and the matrix with “structural” mode
shapes W, are defined as:

0 wy -+ 0
Q=1|. 7 |, =0 Gy - 0. (4.10)
0 0 - w,

The mode shapes are normalised with respect to the mass matrix, thus satis-
fying the following normalisation:

vim, v, =1, (4.11a)
vIK: v, =02, (4.11b)

where I is the identity matrix. For each mode i, the nodal voltages (2)? are
calculated with equation (4.4) by substitution of a structural mode shape 1;,
for the unforced case: g€(t) = 0 and ¢"(t) = 0. The results are stored in the
modal matrix W4, which is related to the matrix with structural mode shapes
by:

¢ =—(K%) 'KS, P, (4.12)

In the mode superposition method the solution of equation (4.5) is written as:
n

u(t) = Z 0; gi(t) = ¥y, q(t), (4.13)
i=1

where q(t) is the column vector with mode participation factors, also referred
to as generalised coordinates. Substitution of this solution into equation (4.5)
and pre-multiplying through by \I!E yields:

T4(t) + L Cuu T, 4(t) + Q% q(t) = L (). (4.14)

For this result the normalisation equations (4.11) have been used. The equa-
tion of motion in terms of the mode participation factors is only coupled
through non-zero off-diagonal coefficients in matrix ‘IIE Cuu ¥,. The internal
damping of a structure is in many cases poorly known. It is often assumed
that the structure exhibits proportional damping, which means that the vis-
cous damping matrix is proportional to a linear combination of the mass and
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stiffness matrices. In the case of proportional damping the generalised damp-
ing matrix reduces to a diagonal matrix of the form:

vlc,, v, =diag(2Gw;) =2EQ, (4.15)

where (; is damping ratio of mode i, and 2 = diag((;) is the so-called modal
damping matrix. For a proportionally damped system the generalised equa-
tions of motion can thus be written as:

I4(t) +2EQq(t) + Q%q(t) = P, £*(1), (4.16)

or, because these generalised equations of motion comprise n uncoupled equa-
tions, as:

Gi(t) + 2Gwi ¢i(t) + wiq(t) =0 £5(t), i=1...n. (417

Truncated modal expansion and residual flexibility

The response of a structure which is excited by a band-limited input is usually
dominated by the modes with an eigenfrequency in or close to the frequency
band of interest. A good estimate of the response in that frequency band
is then obtained with only a small number of modes included in the modal
expansion (4.13). However, in some cases truncating the modal expansion can
lead to errors in the prediction of the dynamical behaviour (see Section 4.2.3
for an example).

With the concept of residual flexibility the accuracy of the truncated modal
expansion can be improved [4]. This concept is explained with a frequency
domain analysis, thus harmonic time dependence is introduced for all time
dependent variables. It is assumed that an accurate prediction of the dynam-
ical behaviour is desired in the frequency band [0,wp]. The exact frequency
domain solution of equation (4.5) can be written as:

m n AT ex
R . u; f
u= u; g; u;q; , = - . 4.18
Z iqi + 4 Z idi qi —2 1 % Ciw; w + 2 ( )
=1 i=m-+1 )

The common way is to truncate the expansion to m modes, where m < n. The
resulting error in the prediction of u is equal to the contributions of modes
m + 1 to n. The maximum frequency of interest wy, is much smaller than the
eigenfrequencies for modes satisfying ¢ > m. Therefore, the response at low
frequencies can be approximated by:

m ~ AT ex n T ek

wu; f u;u; f

u =~ E . + g ) (4.19)
— —w? + 2j¢w; w + w? Bt w?




64

In this approximation the high frequency modes (i > m) contribute “stati-
cally” to the system response, whereas the low frequency modes (i < m) re-
spond “dynamically”. The second right hand side term is often called the
residual mode. Equation (4.19) can be transformed such that the high fre-
quency modes, which are usually not calculated with a FEM program, do not
appear in the expansion. The static displacement response ug can be written
as a modal expansion by inserting w = 0 into equation (4.18):

Mmoo ATex n ~ STex
B w;a; f wu; f
ug = E 2 + 4 E o2 (420)
i=1 v i=m+1 v

With this result, equation (4.19) becomes:

N4

z’”: w0 N i”: a, 07 f* (421)
u~ ug — . .
— —w? + 2j¢w; w + w? 0 —~ W

=

The harmonic displacement response u is now written in terms of modes 1 to m
and the static response ug due to £*. So the cost for a more accurate estimation
of u is the static response analysis that must be performed. The foregoing
analysis is valid for a structure without rigid body modes. For a discussion on
systems with rigid body modes, the reader is referred to Preumont [4].

4.2.3 Example: Strip problem

For a test case consisting of a strip with two asymmetric bonded patches the
model reduction technique was validated (see Figure 4.2). Two PZT patches
of equal size (50 x 30 x 1.0 mm) and equal material properties (PIC-151, see
Appendix A) were bonded on the aluminium strip of 490 x 30 x 1.2 mm. One
patch was a voltage driven actuator (prescribed voltage) whereas the other
patch was a voltage sensor (zero charge).

Three models of the test setup are considered: a dynamic stiffness matrix
model (see Chapter 3), a two-dimensional FEM model and a three-dimensional
FEM model. In this work the commercial finite element program ANSYS was
used. Two element types with piezoelectric capabilities are available in ANSYS:
a two-dimensional four-node solid element and a three-dimensional eight-node
solid element [49]. So-called extra shape functions are included to enhance the
accuracy of solid elements in bending problems [50].

The two-dimensional FEM model consisted of 64 two-node beam elements
along the strip, with a finer mesh in the parts where the patches were located,
i.e. 12 elements along each patch. The patches were modelled with the two-
dimensional piezoelectric solid elements, both patches with 2 elements across
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Figure 4.2: A strip clamped on both sides with two surface bonded patches.
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the thickness. The three-dimensional FEM model had the same discretization
along the length and 5 elements along the width of the strip. The strip and
patches were modelled with four-node plate elements and three-dimensional
piezoelectric solid elements. More details on the ANSYS models are given in

Appendix C.

Eigenfrequencies

In Table 4.1 the first six eigenfrequencies calculated with the three models
are listed. Furthermore, the eigenfrequencies of the same strip, but without
patches, are shown. The three-dimensional FEM model also predicts the tor-
sional and in-plane bending vibration modes of the system, but these are not

included in the results.

Mode No patches Two patches
DSM 2D FEM 3D FEM DSM 2D FEM 3D FEM
1 26.11 26.11 26.35 21.79 21.77 22.00
2 71.97 71.97 72.68 62.13 61.76 62.63
3 141.1 141.1 142.6 135.8 135.6 137.4
4 233.2 233.2 236.2 229.4 228.7 232.3
5 348.4 3484 353.6 358.5 357.0 363.3
6 486.6 486.6 495.1 491.3 489.7 499.0

Table 4.1: Eigenfrequencies (in Hz) of the strip with and without patches.
DSM: analytical model, 2D FEM: two-dimensional FEM model, 3D FEM: three-
dimensional FEM model (zp.n = 138.3 mm, z,.n = 342.5 mm). Only bending

modes are considered.
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In both cases there is good correspondence between the eigenfrequencies.
For the strip with patches, the eigenfrequencies calculated with the two-
dimensional FEM model are closer to the analytical results than those cal-
culated with the three-dimensional FEM model. The same is observed in
the results of the strip without patches. The analytical model and the two-
dimensional FEM model are based on the plane stress assumption, which
is true if the width to thickness ratio by/t, is small. For a plate infinitely
wide in one direction the plane strain assumption is valid. For the strip with
by/t, = 25 the stress distribution will be somewhere in between the plane
stress (w; o< VE) and plane strain (w; o< \/E/(1 — 2)) limit cases. Therefore,
it is not surprising that the three-dimensional FEM model predicts higher
eigenfrequencies.

Frequency response functions

As a next step, the model reduction technique was validated with a frequency
domain analysis. For this purpose, a comparison was made between frequency
response functions (FRFs) which were calculated with the three-dimensional
FEM model in three ways: a full analysis, i.e. directly solving the frequency
domain equivalent of equation (4.3), a reduced analysis where the modal ex-
pansion is truncated to 15 modes, and a reduced analysis with the same num-
ber of modes, but enhanced with the residual mode.
The following form of proportional damping was used:

Cuu = a My, + K2, . (4.22)

It can be shown that the modal damping ratios corresponding with propor-
tional damping are given by:

2wi

Q:1<3+ﬁw>. (4.23)

In Figure 4.3 the magnitudes of the FRFs are shown for three different
locations of the sensor patch (case 1, 2 and 3). The results correspond with
a=20and f=4.7-107%, for which the modal damping ratios of the modes
in the frequency band of interest are between 0.0075 and 0.015. The full FEM
analysis results are in good correspondence with results obtained with an an-
alytical model of the setup, but these are not shown for clarity. For each case,
the FRF from the actuator voltage Vi to the normal sensor displacement wu,,
and the FRF from the actuator voltage to the sensor voltage V5 are shown. It
can be observed that significant errors can occur in the prediction of the FRFs
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if the residual mode is neglected. When the modal expansion is truncated after
m modes, the residual mode correction Au is:

O f

Au=uy — Z % (4.24)

c>

where the first right hand side term is the static response and the second right
hand side term is the contribution of the low frequency modes to the static
response. This equation shows that the residual mode correction is significant
if the static response is not well described by the low frequency modes. A
substantial error in the prediction of an FRF can be expected if the residual
mode correction is of the same order as the truncated modal expansion. This
is the case in the off-resonant regions, which explains why the effect is more
clearly visible near the anti-resonance frequencies of the FRFs. Furthermore,
the effect is more pronounced in the FRF from the actuator voltage to the
sensor voltage (V5/V7). For that particular transfer, the in-plane deformation
significantly contributes to the response. Because the in-plane vibration modes
are quite high in frequency, and thus not included in the truncated modal
expansion, the error is the largest for this transfer.
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Figure 4.3: FRFs calculated with the full FEM model (—), the reduced model without
residual mode (-----), and the reduced model with residual mode (—) (zp.n = 138.3 mm).
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4.2.4 State space representation

So far the structural model was described in terms of second-order differential
equations. Many (feedback) control design methods are based on a so-called
state space representation, which uses a description in terms of first-order
differential equations [4, 51]. In this section the state space representation of
the previously described reduced model is given.

The general state space representation of a linear, time invariant! dynam-
ical system is given by [4, 10]:

x(t) = Ax(t)+Bv(t), (4.25a)
y(t) =Cx(t)+Dv(t). (4.25b)

Equation (4.25a) describes the response of the state vector x(¢) when driven by
the input vector v(t). In this first-order differential equation A is the system
matrix and B is the input matrix. The outputs of the system, which are stored
in y(t), are related to the state vector and input vector as in equation (4.25b),
where C is the output matrix, and D is the feedthrough matrix.

Consider a structure with several piezoelectric actuators, either voltage or
charge driven, which is furthermore excited by structural forces. Also, several
displacement sensors and piezoelectric sensors, which measure either charge
or voltage, are mounted on the structure. The input vector v(¢) and output
vector y(t) for such a system are defined as:

f(t) u(t)
vit)=9(t) p,  y(t)=18"() . (4.26)
g°(t) @°(1)

One choice of suitable state variables are the mode participation factors (gen-
eralised coordinates) and the first-order time derivatives of the mode partici-
pation factors:

x(t) = {g(t)} . (4.27)

By rewriting the second-order equation of motion (4.16) in state variable form,
the system matrix and input matrix become:

A:[O I ] B (4.28)

-0 2EQ

0 0 0
vl ek ()"

u

LA state space model is called time invariant if A, B, C and D do not vary in time.
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The input matrix B is obtained when the equivalent force vector is expanded
as in equation (4.7), thereby using equation (4.12).

The displacement response, which is the sum of the truncated modal ex-
pansion and the residual mode (see equation (4.21)), is in the time domain
given by:

u(t) = ¥, qt) + (UO —w, (0" \113) £ (t). (4.29)

The static displacement response has been replaced by the matrix Ug, in which
each column i is the static displacement response when element i in £*(¢) is
equal to one, whereas all other inputs are zero. With equation (4.29) the
displacement response can be calculated for time-varying inputs. In the same
way, expressions can be derived for the response of the charge and voltage
sensors:

g'(t) = Ky W a(t) + (G~ Ko 0, (92) D) (), (430a)
P°(t) = ;q(t)+(@g—\y;(m)‘lq’g)f*(t), (4.30b)

where Gf and ®{ contain the unit static charge and unit static voltage re-
sponses, respectively, to the inputs stored in f*(¢). With equations (4.29)
and (4.30) the output matrix and feedthrough matrix become:

v, 0
C= |Ky¥, of, (4.31)
2 0
Uy v,
D- |Gyl - KW (@) o] —wIKy ()], @32
i v

Some remarks are made with respect to the implementation of the state space
model. The number of modes included in the truncated modal expansion
is m. The number of state variables is thus equal to 2m. In general the
number of inputs to the system is much smaller than the total number of
DOF in the model n. Therefore, most elements in the nodal force vector f
are zero. Only the non-zero inputs are included in the input vector. Likewise,
only the responses of interest are included in the output vector. In this way a
compact state space model is obtained. For ease of writing, no new symbols
are introduced in this section to denote vectors and matrices accounting for a
few modes, inputs or outputs.
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4.3 Acoustic model

In this section an acoustic model is presented to predict the free field sound
radiation associated with a given vibration response of the structure. Acoustic
wave propagation through a homogeneous elastic fluid such as air is described
by the well known wave equation. In the case of harmonic time dependence,
this equation reduces to the Helmholtz differential equation, which is given
by:

V2p(r) + E2p(r) = —jwpo q(r), (4.33)

where p(r) is the complex pressure? amplitude at location r, k = w/cg is the

acoustic wave number with ¢y the speed of sound in the medium, pg is the den-
sity of the medium, and ¢(r) is some external volume source. The Helmholtz
differential equation can be rewritten in an integral formulation, which is called
the Helmholtz integral equation. In this equation the surface normal veloc-
ity v, (rs) on a vibrating source with a closed boundary S and the radiated
pressure field p(r) are related by [52]:

o)) = f ()8 o) Gen Jas. s

where G(r,r;) is a Green’s function. Note that rs defines a point on bound-
ary S whereas r defines a field point. The value of a(r), the so-called free space
angle, depends on where the pressure is evaluated. It is equal to one if the
point lies outside the closed boundary, and one half if the point is on a smooth
part of the boundary S. When the vibrating surface is subjected to the free
field condition (Sommerfeld radiation condition), then the Green’s function is
the solution of the Helmholtz differential equation excited by a Dirac pulse:

e_jk‘r_r5|

G(r,ry) = ——— (4.35)

CAmr -’

where |r — rg| is the distance between a surface point and a field point. Once
the surface normal velocity distribution v, (rs) has been determined with the
structural model, the associated pressure field can be calculated from equa-
tion (4.34).

Sound pressure is a quantity which depends on the location of a receiver
with respect to the sound source. A more convenient measure for the strength

2In this work pressure refers to acoustic pressure, i.e. the small fluctuation upon the
steady state (e.g. atmospheric) pressure.
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of a sound source is the time-averaged sound power, which is widely used for
comparing sound sources. The sound power is directly related to the time-
averaged sound intensity. In this thesis the terms sound power and sound
intensity will be used as abbreviations of time-averaged sound power and time-
averaged sound intensity. In the case of harmonic time dependence the sound
intensity is given by:

T(r) = JRe (p(r) v*(x) . (4.36)

where v(r) is the acoustic particle velocity and superscript * denotes the com-
plex conjugate.

The vector quantity sound intensity describes the amount and the direction
of net flow of acoustic energy per unit area, at a given position. The sound
power generated within a given volume is equal to the surface integral of the
normal component of the sound intensity:

W = fg I(rs) -n(rs)dsS, (4.37)

where n(ry) is the surface normal. If the surface used for evaluation of this
expression is chosen equal to the surface defining the vibrating body, the sound
power can be written as:

W= %Re ( J(é p(rs) v (1s) dS> | (4.38)

Sound power is often specified in decibels because this scale is better suited
to the “human audio system” than a linear scale. The sound power level is
defined as:

ref

W _
Ly = 10 logy, <W—> ;o W =1-1002 W, (4.39)
where Wy is the reference power.

4.3.1 Rayleigh integral method

In this thesis the analysis is restricted to flat plate-like structures. When it
is assumed that such a structure is placed in a baffle, the Helmholtz integral
equation (4.34) reduces to the Rayleigh integral [52] (or Rayleigh’s second
integral), which is given by:

e—jk‘l‘—l‘5|

_ Jwro e
p(r) = o Js Up(rs) T ds. (4.40)



Numerical Modelling and Experimental Validation 73

Figure 4.4 gives a geometric interpretation of the Rayleigh integral. The baffle
is an infinitely extended rigid surface around the plate. The sound fields on
both sides of the plate are equal in magnitude, but have opposite phase.

Figure 4.4: Geometric interpretation of the Rayleigh integral.

Discretization

The Rayleigh integral is solved with a primitive numerical scheme. The plate
is divided into IV rectangular elements of equal size, which are small compared
to the acoustic wavelength. It is assumed that the normal velocity is constant
across each element. One could say that the plate surface is divided into a
set of elemental radiators or pistons that each move with constant harmonic
velocity. For this discretization, equation (4.40) can be written as:

P;=2fVn, (4.41)

where py is the vector with pressures in a set of field points, v, is the vector
with normal surface velocities of the elemental radiators, and Zy is a frequency
dependent transfer matrix, whose elements are given by:

(2p)yy = 205 0
(/.

: (4.42)

2T rij

where S, is the area of an elemental radiator. The distance between a field
point ¢ and a surface point j is 7;; = |r; — r;j|, where r; refers to the centre
of an elemental radiator. For the same discretization, the expression for the
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sound power (438) reduces to the summation:
7 Se Re ( v p) ( )

where p is the vector with surface pressures, evaluated at the same points on
the surface as v,,. With substitution of p = Zv,,, where Z is the impedance
matrix evaluated on the vibrating surface, the sound power can be written as:

W = % Re (VE Zv,) = viRv, . (4.44)
In this equation R = (S./2) Re(Z) is the so-called radiation resistance matriz,

which can be written as:

i 1 sin(kri2) sin(krin) ]
krio Y krin
2 2 | sin(kra1) :
TCH . " .
in(kryy)
smkm?\“;;rl .. . 1 |

The elements of this matrix depend on the properties of the acoustic medium,
the frequency, and the length and width of the plate. Here the radiated sound
power is evaluated on the plate surface, but it may be developed on any
surface enclosing the plate®. In an alternative approach, which is presented
for instance in references [10] and [53], the radiated sound power is found by
integrating the far-field sound intensity over a hemisphere surrounding the
plate.

A problem arises if the surface pressure itself is of interest. The surface
impedance matrix Z has singular diagonal elements (i.e. because ; = 0). An
approximation can be made to avoid the singularity. The diagonal elements
in the impedance matrix are replaced by:

Zii = poCo (1 — e_jk v (Se/ﬂ)> . (446)

This expression corresponds with the impedance seen by a baffled circular
piston with surface area S, moving with uniform velocity. For this case the
Rayleigh integral can be evaluated analytically. The singularity is not encoun-
tered in the radiation resistance matrix, because this matrix is defined only
by the real part of the surface impedance matrix.

3Tt is thus assumed that the internal loss of the medium is negligible, which is true for
free field sound propagation in air.
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4.3.2 Structural-acoustic coupling

The surface velocity resulting from a structural analysis is available at the node
locations of the FEM model. The centre locations of the elemental radiators,
which define the acoustic mesh, will in general not coincide with the node
locations. It is thus necessary to transfer the nodal results of the structural
model to the centres of the elemental radiators. The use of separate meshes has
the advantage that the radiation matrix can be re-used as long the length and
width of the plate remain unchanged. For example, the same radiation matrix
can be used to analyse a given plate geometry with different arrangements of
the patches (e.g. location, number) In this way, the required computational
effort in parameter and optimisation studies is limited (see Chapter 7).

In the frequency domain, the normal plate velocity can be written in terms
of the mode participation factors as:

Vp = jw v, q, (447)

where W, contains the normal displacement components of the structural
modes, transferred to the centres of the elemental radiators. The size of ¥,
is equal to N X m, where IV is the number of elemental radiators and m is the
number of modes used in the reduced structural analysis. With this equation,
the sound power can be written as:

W =vIRv,
=w?q'Mq, (4.48)

where M is a real, symmetric, positive definite matrix. The diagonal and
off-diagonal terms in M are the so-called self and mutual radiation efficien-
cies, respectively, of the structural modes. It is important to note that the
off-diagonal terms cannot be neglected in the prediction of the sound power.
A consequence of M being a fully populated matrix is that the structural
modes do not contribute independently to the sound power. This also means
that a reduction of the participation factor of one structural mode (e.g. by
active control) does not guarantee a reduction of the sound power. This con-
clusion was also drawn in Section 3.5, where it was shown that control aiming
at structural vibration reduction may lead to an increase of sound at some
frequencies.

4.3.3 Radiation modes

It is possible to calculate a set of surface velocity distributions which are or-
thogonal with respect to the sound power. These surface velocity distributions,
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so-called radiation modes, were first introduced by Borgiotti [54]. Since then
a large amount of work has been published on the topic.

The radiation modes are obtained through a decomposition of a discretized
radiation operator. This radiation operator follows when writing the sound
power in terms of the structural mode participation factors* [53, 55], such
as in equation (4.48), or in terms of the normal velocities of an array of dis-
crete elemental radiators® [56, 57, 58], such as in equation (4.44). Either of
these formulations can be used to determine the radiation modes. However,
the latter approach is used since it separates the dynamical behaviour of the
structure from the associated sound radiation [57]. The radiation modes are
furthermore more accurately described with this approach [59]. An important
feature is that the radiation modes depend only on the geometry of a vibrating
object, and not on other properties of the structure (e.g. material, boundary
conditions).

Eigenvalue analysis

The radiation efficiency is a measure for how well a vibrating object radiates
sound. It is defined as the ratio of the sound power radiated per unit area by
the object to the sound power radiated per unit area by a reference source.
The reference source is a baffled piston vibrating at a high frequency (kR > 1,
with R the effective piston radius) with a velocity equal to the space and
time-averaged, squared normal velocity < 5721 > of the object. The radiation
efficiency is thus given by:

o= L , (4.49)

pocoS < 02 >

where S is the total area of the object. The space and time average of the
squared normal velocity is given by:

1
<2 >= ﬁ/ [un (rs)]?dS = v N v,,. (4.50)
S

Matrix N is a real, symmetric, and positive definite matrix, which for the
discretization introduced previously can be replaced by N = ﬁI. With equa-
tions (4.44) and (4.50) the expression for the radiation efficiency becomes:

viRv,

= 4.51
poCoS VTPLI NVn ( )

g

*As explained by Cunefare [55], one may use any set of orthogonal shape functions.
5Numerical schemes more advanced than the constant velocity assumption of Section 4.3.1
are used by Naghshineh et al. [56].
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As shown by Cunefare [55] the radiation modes and corresponding radiation
mode efficiencies are obtained when solving the generalised eigenvalue problem
for the matrices R and N at each frequency:

ANv,=Rv,. (4.52)

The eigenvalue solution of (4.52) yields a set of real, positive eigenvalues \;
and corresponding real eigenvectors ;. An eigenvector is called a radiation
mode and the corresponding eigenvalue is directly proportional to the radiation
efficiency of that mode (o; = \;/pocoS). The eigenvalues and radiation modes
are stored in two matrices A and I':

A O - 0
0 X -~ 0
=|. . . .|, T=Mm 7 ol (4.53)
0 0 - Ay
The normalization is as follows:
NI =1, (4.54a)
'R =A. (4.54b)

Because the radiation resistance matrix R depends on frequency, the eigen-
value decomposition must be performed for each frequency step. As a result,
the radiation modes and corresponding efficiencies also depend on frequency.

In Figure 4.5 the radiation efficiencies of the first eight radiation modes
for a baffled, rectangular surface are shown as a function of kl,. The aspect
ratio of the surface is I, /l, = 2, where [, and [, are the length and width
of the surface, respectively. The six most efficient radiation mode shapes
are shown for three different frequencies in Figure 4.6. These results were
obtained with a grid consisting of 20 x 10 elemental radiators. It can be
seen in Figure 4.5 that for low values of kl, the radiation efficiencies fall off
very rapidly with increasing radiation mode number. In this frequency region,
the shape of the most efficient radiation mode is a piston-like mode, i.e. the
surface moves with uniform velocity. As the mode number increases, the shape
of the corresponding radiation mode shows more oscillations. The radiation
efficiencies depend on (kl;)" for kl, < 2w, where order n depends on the
radiation mode number. In Figure 4.5 furthermore the grouping behaviour of
the radiation modes can be seen, i.e. certain groups of modes show the same
frequency dependence for their radiation efficiencies [60].
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Figure 4.5: Radiation efficiencies of the first eight radiation modes of a baffled,
rectangular surface as a function of kl, (I,/l, = 2).

At higher frequencies, kl, > 27, when the plate length exceeds the acoustic
wavelength, the efficiencies of all radiation modes become significant. It is
then difficult to distinguish between “strong” and “weak” radiation modes. In
Figure 4.6 it can be seen that the radiation mode shapes start to change from
their low frequency shapes. However, the deviation in shape is quite small for
a considerable frequency range.

Cunefare and Currey [59] presented the results of a parameter study re-
garding the radiation mode concept. They showed that when the number of
elemental radiators is increased by one, i.e. N — N + 1, a new least effi-
cient radiation mode is introduced. Another important conclusion was that
the radiation efficiency of the most efficient radiation mode has a finite upper
bound, and converges fast with increasing number of elemental radiators.
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Figure 4.6: First six radiation mode shapes of a baffled, rectangular surface for
kly = 0.1, kl, = 1.0 and kl, = 5.0.
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Sound power in terms of radiation modes

The vibration response of the plate was previously expanded using the struc-
tural modes, see equation (4.47), but one can alternatively use an expansion
in terms of the radiation modes:

vp,=Ta, (4.55)

where a is the vector with radiation mode participation factors. With this
equation and normalisation equation (4.54b) the sound power can be written
as:

W=vIRv,
—a'TTRTIa

=a'Aa
N

= Ailai®. (4.56)
i=1

This equation shows that the radiation modes contribute independently to
the sound power. In the low frequency range (kl, < 27) the radiation mode
efficiencies fall off very rapidly with mode number. Therefore, the sound power
can be well approximated using only a small number of modes N, < N:

N,
W~ Z N lai)? =allA, a,, (4.57)
i=1

where the subscript r denotes a vector or matrix that accounts for IV, radiation
modes. This approximation becomes less accurate with increasing frequency.
For a proper choice of N,., not only the radiation efficiency is of importance.
The sound power is also determined by the extent to which a radiation mode
participates in the vibration response. The radiation mode participation fac-
tors are calculated from a given normal velocity distribution v,, as follows:

a, =T'Nv,. (4.58)

This result is found when equation (4.55) is pre-multiplied by T'Y N and nor-
malisation equation (4.54a) is used. A further simplification is to express the
radiation mode participation factors in terms of the structural mode partici-
pation factors q:

a,=jwIlI'NW¥,q. (4.59)
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As mentioned before, the radiation modes depend on the geometry, but not
on other structural properties. Therefore the radiation modes can be re-used
to calculate the sound power as long as the geometry remains unchanged.

4.3.4 Radiation filters

It was mentioned before that several control design methods rely on a state
space model. A number of methods for capturing the sound radiation be-
haviour into a state space model have been reported in the literature. Such a
model is referred to as a radiation filter. Baumann, Saunders and Robertshaw
[61] introduced the idea of a radiation filter. They used a description of the
sound power in terms of the structural modes to develop the radiation fil-
ter. More recently, Gibbs, Clark, Cox and Vipperman [62] introduced a new
method for designing radiation filters termed radiation modal expansion. In
contrast to the work of Baumann et al., they used a description of the sound
power in terms of the radiation modes.

A radiation filter can be combined with the state space representation of
the structural model to obtain an augmented system model accounting for the
structural-acoustic coupling. With the structural-acoustic state space model
the performance of various control systems can be analysed. The control
strategies considered in Chapters 5 and 6 are not based on a state space
representation of the acoustic model. However, for the sake of completeness a
comparison of the two approaches for designing a radiation filter is presented
in Appendix D.
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4.4 Experimental validation

The experimental validation of the numerical model is presented in this sec-
tion. For this purpose, a test setup consisting of a clamped plate with two
asymmetric bonded patches is considered. The structural model is validated
by means of a comparison of predicted and measured eigenfrequencies, mode
shapes and frequency response functions. The acoustic model is validated by
means of a comparison of predicted and measured sound powers radiated by
the setup due to the excitation of the plate with the patches. The dynamical
behaviour of the setup was determined in the frequency range up to 500 Hz.
In the present analysis only the open-loop behaviour is considered (i.e. no
control).

4.4.1 Experimental setup

The experimental setup is shown in Figure 4.7. An aluminium plate with di-
mensions 490 x 244 x 1.2 mm is clamped in a frame, which consists of thick
aluminium bars. Two identical rectangular PZT patches (PI Ceramic) of
50 x 30 x 1.0 mm were bonded to the plate with a conductive glue (Epotek
H20 E). A conductive glue was used to provide an easy electrical connec-
tion to the bottom electrode, i.e. the electrode bonded to the plate sur-
face. The patches could be driven independently by a high voltage ampli-
fier (Piezomechanik SVR 1000/3). This amplifier has a low voltage monitor
output, which was used for measuring frequency response functions.

Figure 4.7: Experimental setup, 1: Frame, 2: Plate, 3: Patch 1, 4: Patch 2.

A schematic view of the setup including measurement equipment is shown in
Figure 4.8. The experimental results presented in this section, but also in later
chapters, were obtained with the following sensor types:
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o Accelerometers (Briiel & Kjeer (B&K) 4374). Accelerations normal to
the plate surface were measured with small accelerometers. The acceler-
ation signal was amplified by a B&K 2690 Nexus conditioning amplifier.

e Microphones (B&K 4192). Half-inch microphones measured the acoustic
pressure in discrete field points, also in combination with the Nexus
conditioning amplifier.

e Laser vibrometer (Polytec). The laser vibrometer was mounted on a
programmable z-y table (Dantec) to measure the normal plate velocity
in a large number of points (in an automated way).

e Sound intensity probe (B&K 2683, B&K 2260). With a two-microphone
sound intensity probe the sound power radiated by the plate was mea-
sured (more details will be given in Section 4.4.4).

A DSPT SigLab dynamic signal analyser processed the sensor signals. This
is a four-channel analyser so not all sensors could be used at the same time.
All measurements were performed in a room of 2.8 x 2.8 x 2.0 m with sound
absorbing walls. The main reason for using this room was in order to isolate
the experimental setup from external acoustic sources.

Intensity probe

Laser vibrometer
Computer

M

SigLab enalyser

Siglab
©00oommaH o oos
T

XY-table

Voltage amplifier

Figure 4.8: Experimental setup.
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4.4.2 Numerical model

In Figure 4.9 the properties of the plate and the patches are given. The mate-
rial properties of the patches can be found in Appendix A. The eigenfrequency
of the first structural mode of the setup showing considerable displacement of
the frame is well above 500 Hz. Therefore the frame was not included in the
structural model.

Patch 2
(lp)y Patch 1
A
z Ypel Ypel
Lpen
Tped
Plate Patches
(Ip)a 049 m
(Ip)y 0.244 m (Ipe)a 0.05 m
t 1.2-107% m (Ipe)y 0.92 m
Pp 2710  kg/m? tpe 1.0-1073 m
E 70 - 109 N/m2 Tper)y Ypeo  0.191, 0.074 m
Vp 0.3 Tped, Ypeld 0333, 0.108 m
D .

Figure 4.9: Model parameters (material properties of the patches are given in
Appendix A).

The FEM program ANSYS was used to model the setup. The plate was meshed
with 48 and 24 four-node plate elements along its length and width, respec-
tively. In the regions near the PZT patches the mesh was refined to correspond
with the mesh of the patches, which consisted of 10 x 6 x 2 eight-node piezo-
electric solid elements (see Appendix C for more details). Two steps were
required to create a reduced structural model. First, the eigenfrequencies and
mode shapes were determined with a modal analysis. Second, for each input
to the system (e.g. actuator voltage) a static analysis was performed. This
second step was required to include the residual mode. The results were im-
ported in MATLAB where the reduced structural model was assembled. The
acoustic model, which consisted of 20 x 10 elemental radiators, was also de-
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fined in MATLAB. The properties of air are pg = 1.2 kg/m? and ¢y = 343 m/s.
The results were obtained with 20 structural modes and 10 radiation modes.
It is important to note that the acoustic model predicts the sound power ra-
diated on one side of the plate under the assumption that the plate is baffled.
However, in the experimental setup no baffle was used.

4.4.3 Structural response

The structural model presented in Section 4.2 was validated in two ways. First,
a comparison was made of calculated and measured eigenfrequencies and mode
shapes. As a next step, some frequency response functions were considered.

Eigenfrequencies and mode shapes

The modal properties of the experimental setup were determined in the fre-
quency range up to 500 Hz from measured frequency response function data.
For this purpose a broadband driving signal was applied to “patch 17 (see Fig-
ure 4.9), which excites all modes in this frequency range. The plate response
was measured with the laser vibrometer. Transfer functions between the volt-
age applied to the patch and the normal plate velocity were measured on a
grid of 15 x 7 points. The eigenfrequencies were identified as the amplitude
resonance frequencies in the frequency response functions.

The numerical and experimental results of the eigenfrequency analysis are
shown in Figure 4.10. There is a good agreement between the predicted and
measured eigenfrequencies of the plate with patches. The numerical results for
a clamped plate without patches are also shown. The eigenfrequencies of the
plate without patches are for most of the modes higher than the eigenfrequen-
cies of the plate with patches. This is because the patches mainly introduce a
mass effect for the low frequency modes (see also Section 3.4). A remarkable
aspect is that the mass effect results in a substantial difference between some
of the mode shapes of the two setups. It appears that modes 4 and 5 of the
plate with patches are linear combinations of the 4-1 and 1-2 modes of the
plate without patches. This effect is also visible in the experimental results.
Although the difference between these two mode shapes is considerable, the
eigenfrequencies are nearly equal.

SWith the numerical model the undamped eigenfrequencies were calculated, whereas the
measured amplitude resonance frequencies depend on the amount of damping in the system.
However, because the damping is very small (about 0.5 %), the differences between the
undamped and damped eigenfrequencies are negligible.
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Figure 4.10: First six structural mode shapes; numerical and experimental results
are shown. The numerical results are interpolated to an equidistant plot grid.
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An alternative to comparing predicted and measured mode shapes by visual
inspection is the modal assurance criterion (MAC). This criterion provides a
measure for the degree of consistency between a numerical mode shape aj"™
and an experimental mode shape ﬁjXp. The MAC criterion is defined here as:

((ﬁ?um)T ﬁ?xp) 2
((ﬁ?um)T ﬁ?um> ((ﬁjXP)T ﬁjxp>
The value of MAC(i,j) lies between zero and one. A value near one indi-
cates a good correspondence between the mode shapes, whereas a value near
zero indicates that the mode shapes are not consistent. The mode shapes

obtained with the FEM model (normal displacement only) are interpolated to
the measurement grid to make the comparison by MAC possible.

MAC(i, j) =

(4.60)
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Figure 4.11: Comparison of numerical and experimental eigenfrequency analysis
results: (a) eigenfrequencies and (b) MAC values, where the area of a square
corresponds to MAC(z, j).

In Figure 4.11(b) the MAC values for the first eight modes are shown. For
each pair (7,j), the area of the square corresponds to the value of MAC(4, j).
For most of the modes the MAC values for i = j are close to one indicating a
good correspondence between the predicted and measured mode shapes.” For
modes 4 and 5 the consistency is less.

A num

It is noted that for a perfect match, i.e. af"™ = aj*?, the MAC values for i # j are not
equal to zero. This is because structural modes are orthogonal with respect to the mass and
stiffness rather than to each other.
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In Figure 4.11(a) the measured eigenfrequencies are plotted against the
predicted eigenfrequencies. All triangles are close to the dashed line, which
indicates that there is a good correspondence between the results.

Frequency response functions

In addition to the modal properties, frequency response functions for two
separate excitations were considered. First, the plate was excited by a voltage
applied to “patch 1”7 (actuator patch). An accelerometer was located at the
centre of the patch, on the plate side opposite to where the patch is bonded.
Also, the voltage across the electrodes of “patch 2” was measured (sensor
patch). To measure the voltage across a patch the electrodes were connected
to the SigLab analyser without an amplifier. In the numerical model the sensor
patch was simulated by a zero charge boundary condition on the top electrode
of the patch (open circuit).

— Model
== Experiment == Experiment
100 200 300 400 500 100 200 300 400 500
Frequency [Hz] Frequency [Hz]

Figure 4.12: Calculated and measured FRFs from voltage applied to patch 1 V;
to (left) accelerometer displacement w,, and (right) voltage across patch 2 V5.

The FRF from the actuator patch to the accelerometer and the FRF from the
actuator patch to the sensor patch are shown in Figure 4.12. The measured ac-
celeration signal is integrated twice for a comparison with the numerical model.
There is a reasonable agreement between the predicted and measured results.
The error is more significant in the FRF of the sensor patch, especially in the
range from 300 to 400 Hz, but no plausible explanation was found for this.
In the FRF of the accelerometer, in every interval between two consecutive
resonance frequencies, there is an anti-resonance frequency. This property of a
“co-located” actuator/sensor pair is important for feedback control design [4],
as will be shown in Chapter 6.
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Next, the plate was excited by PZT patch 2 and the acceleration (ac-
celerometer co-located with patch 2), and the voltage across patch 1 was mea-
sured. The numerical and experimental results are shown in Figure 4.13.

10° — Model | 107 — Model
== Experiment == Experiment
100 200 300 400 500 100 200 300 400 500
Frequency [Hz] Frequency [Hz|

Figure 4.13: Calculated and measured FRFs from voltage applied to patch 2 V5
to (left) accelerometer displacement w,, and (right) voltage across patch 1 V;.

The location of patch 2 is such that the first, second, third and eight modes
are well excited by the patch. The other modes are excited too, as can be seen
in the FRF of the PZT sensor, but less effective. It is noted that the location
of the sensor strongly determines whether a certain resonance frequency is
visible in an FRF.

As aresult of piezoelectric reciprocity the FRFs between the actuator patch
and sensor patch must be identical for the two excitations. This is confirmed
both numerically and experimentally in Figures 4.12 and 4.13 (right-hand
side figures). In this respect reciprocity implies that the voltage measured by
patch 2 when driving patch 1 is equal to the voltage measured by patch 1
when driving patch 2.

4.4.4 Sound radiation
Sound intensity method

The sound power radiated by an acoustic source is found by integrating the
sound intensity, which is the product of acoustic pressure and particle velocity,
over a surface enclosing the source. In practice the pressure is relatively easily
measured with microphones, but it is not so easy to measure acoustic particle
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velocity.® In some special cases the sound intensity can be related directly to
pressure, thereby circumventing the measurement of the particle velocity. It
is then possible to calculate the sound power from pressure levels measured on
a surface enclosing the source in the far field. Such pressure based methods
must be carried out in special measurement facilities, where the conditions for
the relation between intensity and pressure are satisfied. One example is the
anechoic room, in which sound waves travelling from an acoustic source are
absorbed by the walls, thus simulating a free field condition (ISO 3745). A
second example is the reverberant room, in which sound is reflected so many
times that it travels in all directions with equal magnitude and probability, in
order that the diffuse field condition is satisfied (ISO 3741).

Sound intensity based sound power measurements do not require special
measurement rooms. In this work an intensity probe with two closely spaced
microphones is used to estimate the sound intensity (see Figure 4.14). The
microphones are separated by a solid spacer and mounted head-to-head. The
basic idea is to find an estimate of the sound intensity at the centre of the
spacer.

dp _p2—p1
dr Ar
ﬁ

Sound wave

Mic. 1 71 Mic. 2

I |

I
Spacer Intensity probe

[)——
p—

Figure 4.14: Estimation of the pressure gradient with a sound intensity probe.

In a linear sound field the particle velocity is related to the pressure gradient
by Euler’s equation, which for propagation in one direction reads:

) v (t) _ Op(t)
0o or "’
where v,(t) is the particle velocity in the direction r. The particle velocity is

estimated by replacing the pressure gradient with a finite difference approx-
imation using the two microphone signals, as illustrated in Figure 4.14. In

(4.61)

8There exist acoustic particle velocity sensors, e.g. the microflown, but the use of such
sensors in sound intensity measurements is not considered in this work.
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practice the time domain microphone signals are transformed to the frequency

domain using FFT, so the particle velocity estimation becomes:

L pp-p
jpow Ar

vy R , (4.62)
where p; and po are the complex pressure amplitudes measured with the mi-
crophones on the intensity probe, and Ar is the spacer length. The pressure
at the centre of the spacer is approximated by p = (p1 + p2)/2. Thus, with
equation (4.62) the sound intensity in direction r can be written as:

- 1

I, = §Re (p*vy) =~ Im (pip2) - (4.63)

" 2pwAr

Equation (4.63) gives an estimate of the sound intensity at a single point on
the surface enclosing the acoustic source. The sound power is obtained by

multiplying the space average of the sound intensity (/;)ave with the surface
area S:

W = (I )ave S (4.64)

There are two standarised procedures to obtain the space-averaged sound in-
tensity. The discrete point method (ISO 9614-1) consists of many measure-
ments, where for each measurement the probe is held at a single point. With
an equal distribution of points across the measurement surface, the space-
averaged intensity equals the average of the measured point intensities. In
the scanning method (ISO 9614-2) the intensity probe is moved with constant
speed across a path on the measurement surface. Both the discrete point
method and scanning method are used in this work.

Intensity based sound power measurements are attractive because there
is no need for a special measurement facility, one can measure close to the
source (near field) where signal-to-noise ratios are high, and a source does not
have to be isolated from other acoustic sources. The method can however not
be applied without constraints. One should carefully consider the following
limits:

e High frequency limit. The finite difference approximation is only valid
if the acoustic wavelength is large compared to the spacer length. This
poses an upper frequency limit on the intensity method.

e Low frequency limit. The estimation of the sound intensity in equation
(4.63) can also be written as:
1

P in(A0
r 2pOwAr|pl|\p2|Sl]fl( )
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where A is the phase angle between the microphone signals. At low
frequencies, where the wavelength is much larger than the spacer length,
this phase angle is small. In all analysing systems there will be a phase
mismatch between the two measurement circuits, e.g. because the mi-
crophones are slightly different. The sound intensity estimation will
be substantially under- or overestimated if the phase change across the
spacer is of the same order as the phase mismatch.

The frequency limits are to a large extent determined by the spacer length and
the quality of the measurement hardware. In the above, some possible errors
in sound intensity estimations were given, but this is certainly not a complete
list. More details can be found for instance in references [63, 64, 65, 66].

Implementation

The experiments were carried out with the B&K 2683 intensity probe with
two half inch microphones (B&K 4181) separated by a spacer of 50 mm. The
B&K 2260 signal analyser can be used to determine the sound power, but it
gives results in octave or one-third octave frequency bands. In the present
study the narrowband behaviour is of interest and therefore the B&K 2260
was used only as a pre-amplifier of the microphone signals. The outputs of
the B&K 2260 were processed by the Siglab analyser and postprocessing, to
obtain the sound power, was carried out in MATLAB.

The estimation of the sound intensity in equation (4.63) is proportional
to the imaginary part of the cross-spectrum of the microphone signals. The
FRFs from the voltage across the actuator patch to the microphone signals
were used to calculate the cross-spectrum. The result is the sound intensity
corresponding to a unit excitation voltage (perfect white noise). The measure-
ment result is thus independent of the gain setting of the voltage amplifier,
which makes it easy to compare numerical and experimental results.

Spatial averaging

The standards for the discrete point method and scanning method prescribe
that a hypothetical measurement surface be defined, which encloses the acous-
tic source. The use of flat surfaces makes it easy to position the sound intensity
probe, but as shown in Figure 4.15 the averaged sound intensity must be mea-
sured in multiple surfaces. Such a measurement is time consuming, which is
not attractive if one wants to investigate the control performance in terms of
sound power for different control strategies.
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Standard This work

\

P

Measurement surface

Figure 4.15: Standard definition of measurement surfaces and the method used
in this work.

Hence, in this work the sound power radiated from one side of the plate is
considered. The measurement surface is defined as shown in Figure 4.15.
This simplified approach speeds up the sound power measurements, but as a
consequence the results do not represent the total sound power radiated by
the structure. This aspect is further discussed when the experimental method
is compared with numerical results.

Scanning method Point method

Figure 4.16: lllustration of the sound power measurement with the scanning
method and the discrete point method.

Figure 4.16 shows how the discrete point method and the scanning method
were used for spatial averaging of the sound intensity. The discrete point
method can be expected to be more accurate and repeatable, but with the
scanning method sound power measurements can be carried out much faster.
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The scanning method is therefore preferable for parameter studies.

An experimental comparison of the discrete point method and scanning
method is presented next. The discrete point method was performed on a
grid consisting of 9 x 5 points, using an automated measurement procedure in
which the intensity probe was mounted on the x-y table. Finer grids were also
applied, but no significant improvement of the sound power was found. Several
measurements were carried out using the scanning method, each lasting about
20 seconds, and following the path shown in Figure 4.16. Some differences
between the sound powers measured with consecutive scans were obtained in
frequency ranges in which the sound power was relatively small, but in general
the repeatability was good. The plate was excited by patch 1 in the frequency
range from 86 Hz to 486 Hz (pink noise). As mentioned before, the sound
intensity was estimated using the FRFs of the microphones mounted on the
intensity probe. Therefore, the results represent the sound power radiated by
the plate when driving the patch by a unit voltage. The actual sound power
is much higher; the input voltage was about 30 V (rms).?
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Figure 4.17: Comparison of scanning method and discrete point method: sound
power radiated when patch 1 is driven (unit input).

In Figure 4.17 the sound power levels measured with the discrete point and
scanning methods are shown. The scanning method was also performed for a
number of tonal inputs, i.e. the sound power was measured when driving the
patch by a single frequency input. This approach was used to measure the

9For a linear system: if the input voltage is doubled, then the increase in sound power
level is 6 dB.
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sound power in the case of narrowband feedforward control, as will be shown
in Chapter 5. There is a good agreement between the results in the frequency
ranges where the sound power is relatively high. However, in frequency ranges
in which the sound power is small, e.g. near 350 Hz, there is a clear difference
between the results. In such ranges the sound power measured with the scan-
ning method shows an irregular frequency dependence. In the same ranges
the repeatability of the scanning method is bad.

Comparison with model

The numerical prediction of the sound power is compared with the experi-
mental results in Figure 4.18. Results are shown for the case that the plate is
excited by patch 1 and for the case that the plate is excited by patch 2. The
agreement between the prediction and measurement is far from excellent, but
the numerical model certainly predicts the trends in the experimental results.
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(a) Excitation: patch 1. (b) Excitation: patch 2.

Figure 4.18: Calculated and measured sound power radiated by the plate for
two excitations (unit input).

In Figure 4.19 the predicted and measured structural responses are shown in
terms of the space and time average of the squared normal plate velocity (see
equation (4.50)). The plate is excited by patch 1. The experimental result was
obtained from the measured FRFs used for the eigenfrequency analysis (see
Section 4.4.3). The agreement between the numerical and experimental results
is much better for the structural response than for the acoustic response shown



96

in Figure 4.18(a). It is therefore concluded that the error in the prediction of
the sound power is the result of an inaccurate acoustic model.

Frequency [Hz]

Figure 4.19: Calculated and measured structural response (excitation: patch 1,
unit input).

The Rayleigh integral is based on the assumption of a baffled plate. However,
the experimental setup was not placed in a baffle. Therefore, the radiation
conditions in the model and the experiment are different. In order to quan-
tify the effect of a baffle, an acoustic model of the experimental setup was
created with the so-called boundary element method (BEM) [67, 68]. In the
boundary element method (BEM) the radiating surface of an object is divided
into elements. The Helmholtz integral equation (4.34) forms the basis of the
boundary element method.

In Figure 4.20 the sound powers predicted with the BEM model and the
Rayleigh integral model are compared with the measured sound power. These
numerical results were obtained using the measured plate velocity distributions
as input to the models. The prediction of the BEM model is very close to the
measured sound power. For the largest part of the frequency range shown
in the figure, the Rayleigh model overestimates the measured sound power.
At low frequencies the wavelength is large compared to the dimensions of the
experimental setup. A baffle prevents interaction between the sound fields on
both sides of the plate. However, if no baffle is used, there is interaction of
the sound fields, and as a result the plate radiates less efficiently.

The results in Figure 4.20 show that the BEM model is better suited for
the current test problem. It is stressed that the BEM analysis is included only
to illustrate the effect of a baffle of the sound power. The application of BEM
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Figure 4.20: Comparison between Rayleigh model and BEM model (excitation:
patch 1, unit input).

models is beyond the scope of this thesis. Hence, in the following chapters
the Rayleigh model is used. Although the prediction of the sound power is
far from excellent, the Rayleigh model certainly predicts the trends found in
the experimental results. This simple model is therefore sufficiently accurate
for the purpose of the subsequent chapters: to illustrate the effect of active
control.
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4.5 Concluding remarks

In this chapter an approach to model the structural-acoustic behaviour of
plate-like structures with surface bonded piezoelectric patches was presented
and validated. In this numerical approach, the structural and acoustic re-
sponses are modelled in an uncoupled way. First, the vibration response of
the structure is calculated with the structural model. The resulting surface
velocity distribution is used as the input for the acoustic model for calculat-
ing the sound radiation. The finite element method is applied to obtain an
accurate description of the dynamical behaviour of the structure with piezo-
electric patches. The associated free field sound radiation is calculated with
the Rayleigh integral method. With model reduction techniques the number
of degrees of freedom in the model is greatly reduced. The result is a efficient
analysis tool which can serve as a basis for the design of a controller.

For an experimental setup consisting of plate with two surface bonded
patches the structural model and acoustic model were validated. The struc-
tural model was successfully validated with an experimental eigenfrequency
analysis and an FRF analysis. A remarkable aspect is that the added mass
and stiffness of the (small) patches can significantly change the mode shapes,
whereas the eigenfrequencies are hardly affected. Sound power measurements
were performed to validate the acoustic model. Although the agreement be-
tween predicted and measured acoustic responses is far from excellent, the
numerical model certainly predicts the trends found with the experiments.

The modelling approach is general in the sense that the structure is mod-
elled with FEM. It is therefore possible to model structures with complex
geometries and boundary conditions. Less general is the Rayleigh integral
method for predicting the sound field, since it is based on the assumption
that the structure is a baffled plate. For structures with complex geometries,
a more advanced technique such as the boundary element method must be
used. However, for the analysis of the plate setup considered in this thesis,
the Rayleigh integral model is sufficiently accurate.

The numerical model provides a basis to simulate and investigate the be-
haviour and performance of various control strategies. In the following chap-
ters, the model is used in the analysis of a feedforward controller and a feedback
controller for reducing acoustic radiation.



Chapter 5

Feedforward Control

5.1 Introduction

In this chapter the feedforward control of sound radiation of plate-like struc-
tures is considered, thereby using piezoelectric patches as part of the active
control system. A feedforward control strategy is possible only if there is in-
formation about the primary disturbance excitation of the structure. If this
is not the case, one has to resort to feedback control strategies, which is the
topic of Chapter 6. Figure 5.1 shows a schematic representation of an elastic
structure with a feedforward control system. This control problem is similar
to the idea of Paul Lueg [5] for controlling sound propagation in a tube (see
Chapter 1), but this case concerns the propagation of elastic flexural waves.

Incident wave from

primary source Elastic structure
<
Reference Electronic Secondary Error
sensor controller source sensor

Figure 5.1: A feedforward control system for the control of wave propagation
in an elastic structure.

Due to some primary source (disturbance source) a flexural wave travels
through the elastic structure. In general the input from the primary source
cannot be measured directly, so a reference sensor is used to detect the in-
coming wave. The signal from the reference sensor is fed to the electronic
controller, which then drives the secondary source (control actuator). The ob-
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jective is to design the controller such that the output from the error sensor
is minimised.

An electronic controller is generally implemented on a digital signal pro-
cessor (DSP). There is an inevitable delay associated with the controller due
to the processing time of the DSP, but also due to amplifiers that are present
in the feedforward path. The feedforward control of random disturbances is
only effective if the delay in the path from the reference sensor to the error
sensor through the controller is smaller than the time required for the elas-
tic wave to travel from the reference sensor to the error sensor through the
structure. In control theory this is referred to as the causality constraint. The
causality constraint is of no importance if the incident wave is deterministic,
e.g. harmonic. Then, only the fundamental driving frequency in the primary
signal needs to be detected.

In this chapter the feedforward control of harmonic disturbances is consid-
ered. In Section 5.2 quadratic optimisation is applied to estimate the perfor-
mance of feedforward control systems with one or more secondary sources and
one or more error sensors. This method, which is referred to here as optimal
control, is applied in Section 5.3 for studying the control of sound radiation of
a plate structure, with surface bonded patches as secondary sources. Several
arrangements of the controller are considered and error sensors are used that
measure either the structural response or the acoustic response of the system.
In Section 5.4.2 a number of feedforward control arrangements for harmonic
disturbances are tested on the experimental setup that was introduced in the
previous chapter. The experimental results are compared with numerical re-
sults, which are calculated with the structural and acoustic models presented
in Chapter 4.
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5.2 Optimal control

In this section a procedure is outlined for the analysis of feedforward control
systems. A feedforward control system can, for example, be used to control
the sound radiation of a structure such as shown in Figure 5.2. The primary
excitation of the structure is due to a point force in the transverse direction,
i.e. perpendicular to the plate surface. This disturbance will put the plate
into motion and as a result, the error sensor, which is an accelerometer, will
produce an error signal. The secondary control source is a surface bonded
piezoelectric patch. In the analysis that follows, the objective is to find the
control signal that must be applied to the secondary source to minimise the
error signal.

Error sensor
(accelerometer)

Primary path

Ud Yd + Y
—» H,

+

Secondary path Ye

Secondary source
(piezoelectric patch)
Primary source

(point force)

Figure 5.2: Example of a feedforward control system.

It is assumed that all parts of the system, that is structural, piezoelectric and
electrical, are linear. Furthermore, all signals are in their steady state, so the
effect of feedforward control is considered for each frequency independently.
With the system being linear, in the frequency domain the complex output
from the error sensor, y, is the superposition of the complex output due to
the primary source operating alone, ¥4, and the complex output due to the
secondary source operating alone, y.. The error signal can furthermore be
expressed in terms of the complex amplitude of the point force, vy, and the
complex amplitude of the voltage applied to the patch, v.:

Y="Yd+Ye=Hqva+ Heve. (5.1)

In this equation H; represents the so-called primary path, which is the FRF
from the primary source to the error sensor. The so-called secondary path H. is
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the FRF from the secondary source to the error sensor. It is assumed that the
signals applied to the primary and secondary sources are perfectly coherent,
i.e. no other uncorrelated signals are present that would act as noise. Then,
the acceleration signal can be set to zero at any frequency by introducing a
secondary input equal to:
vt = —% vg . (5.2)

This equation illustrates that the secondary input must be such that the dif-
ference in amplitude and the phase shift between the primary and secondary
paths are compensated. Obviously, the secondary path FRF may not be zero
in order to prevent an unbounded optimal secondary input. Such a singular
condition is avoided if there is some damping in the system, but the secondary
input can still be very large near certain frequencies (see Section 5.3).

Very often the control system consists of multiple error sensors and multi-
ple secondary sources. Equation (5.1) can be written for the multiple-input-
multiple-output (MIMO) case as:

y=Hyvs+H_.v., (5.3)

where it has been assumed that there are also multiple primary sources. Note
that the (i,j)-th element in matrix H, is the FRF between error sensor 7
and secondary source j. If the number of error sensors and the number of
secondary sources are equal, the vector with optimal secondary inputs setting
all error sensor outputs to zero is given by:

Vmin = —Hc_lHd Vd, (54)

c

provided that H,. is not singular. In many cases, however, the number of sen-
sors and the number of secondary sources are not equal. Then, the secondary
input can be found by minimising a quadratic error criterion of the form:

J=y"W,y +viWw,.v,, (5.5)

where W, is the error weighting matrix and W is the effort weighting matrix.
With the error weighting matrix, some error signals can be given greater prior-
ity than others. The effort weighting matrix has the effect of preventing small
reductions of the error signals at the expense of large control inputs. With
equation (5.3) the error criterion can be written in the so-called Hermitian
quadratic form [6]:

J=vIiAv.+viib+blv. +e, (5.6)
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where the individual terms are given by:

A=H!W,H.+W,, (5.7a)
b=H!W, H,v,, (5.7b)
c=viH!W, Hyv,. (5.7¢c)

It should be noted that the matrix A is not the same as the state space matrix
used in Section 4.2. The cost function J is quadratic in the vector with control
inputs v, and possesses a unique minimum if A is not singular, which is
guaranteed if A is positive definite. In order to ensure the positive definiteness
of A, the weighting matrices W, and W, must be positive definite.! When
this condition is satisfied, the control inputs for which the error criterion is
minimal (5.6) are given by [6]:

v — _A7lp, (5.8)

C

and the minimum of the error criterion is:
JUn — ¢ —pHATD. (5.9)

Note that if there are as many secondary sources as error sensors and no
effort weighting is included (i.e. W, = 0), the vector with optimal secondary
inputs given in equation (5.8) is equal to the result in equation (5.4). In
equation (5.8) the optimal secondary inputs are given relative to the primary
inputs. It is however not necessary to explicitly know the complex amplitudes
of the primary disturbances. The only necessity is a harmonic reference signal
with a frequency equal to that of the primary input (see Section 5.4).

5.3 Error criteria

In Chapter 4 the sound power was introduced as a measure for the free field
sound radiation of a vibrating structure. It was shown that the sound power,
when solved with a numerical method, can be written as:

W=vIRv,, (5.10)

where v,, is the vector with normal plate velocities and R is the radiation re-
sistance matrix. This equation is quadratic in v,,, which on its turn is propor-
tional to the primary and secondary inputs acting on the system. Therefore,

!The positive definiteness of W ensures positive definiteness of A even if HY W, H, is
singular, which can be the case if there are fewer error sensors than secondary sources.



104

the sound power can be used as an error criterion in optimal control theory.
This error criterion defines the best possible reduction in sound power that
can be achieved with a predetermined configuration of the secondary sources.
It is, however, not easy to implement this kind of control strategy in practice.
A practical implementation consists either of sensors that measure the struc-
tural response, such as accelerometers, or of sensors that measure the acoustic
response, such as microphones. In this section the use of these more realistic
error sensors in active structural acoustic control is considered.

Actuator configuration Sensor configuration
Q11 012 @13 @014 @15
1 O O [
bp % T8 ©6,07 @3 09 ©10
Y L] Yy .

L [ N Ry 1 01 %2 03 01 @5
1 2 3 4
VI VI

Figure 5.3: Uniform distribution of actuator patches (left), and velocity or
microphone error sensors (right).

In this section results are presented for a clamped rectangular aluminium
plate of 490 x 244 x 1.2 mm. Eight voltage driven actuator patches (50 x
30 x 1.0 mm) are uniformly distributed over the plate in a 4 x 2 arrangement,
as shown in Figure 5.3.2 The feedforward control system consists of error
sensors, uniformly distributed in a 5 x 3 arrangement, that measure either the
normal plate velocity or the acoustic field pressure. In the case acoustic error
sensors are used the sensor grid is adjacent to the plate surface with an offset
of 100 mm. The primary excitation is due to a transverse point force located
at (r,y) = (147,86.3) mm (indicated by P in Figure 5.3).

In the following sections several feedforward control arrangements will be
considered, thereby varying the number of patches used for control and the
number and type of error sensors. Clearly, the goal is to reduce the sound
radiated by the plate. The results are therefore presented in terms of the
sound power radiated by the controlled system, rather than by comparing the
outputs of the error sensors. All results correspond to the case where the point
force has an amplitude of 1 Newton.

2The material properties of the plate and the patches can be found in Figure 4.9 and
Appendix A.
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5.3.1 Single channel control

As a first step, a feedforward control system consisting of one secondary source
and one velocity error sensor is considered. The associated error criterion is the
squared amplitude of the normal plate velocity at the error sensor: J = |v,|%.
The performance of two such single channel configurations, consisting of patch
6 and either sensor 4 or sensor 12, is shown in Figure 5.4. The best possi-
ble performance that can be obtained with this secondary source, i.e. when
the error criterion is the sound power (J = W), is also shown in the figure. In
optimal control theory the secondary input is calculated for each frequency in-
dependently. The results will therefore be the same if the error sensor measures
the normal plate displacement or acceleration rather than the plate velocity.
In practice, this type of control is probably the most easily implemented with
accelerometers (see Section 5.4.3).

110r ;
__1o00r
=
— 90r
2
a 80r
E
g 70 .
c% — No control
60 — J = |vn|?, sensor 4
== J = |u,|?, sensor 12
50 - J=W 1
200 300 400 500

Frequency [Hz]

Figure 5.4: Control performance when patch 6 is the secondary source and
either error sensor 4 or 12 is used (.J = [v,|?), or the sound power is the error
criterion (J = W).

The single channel controllers give a perfect cancellation of the normal plate
velocity at the error sensor. The effect of reducing the velocity at one error
sensor on the overall sound radiation is not straightforward. It can be observed
in Figure 5.4 that the sound powers are reduced at some frequencies, when
compared with the uncontrolled system, but increased at other frequencies. A
remarkable aspect is that this type of controller presents resonant behaviour
at frequencies different from the eigenfrequencies of the uncontrolled system.
These “new” resonance frequencies depend on the location of the error sensor.
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For instance, when the displacement at error sensor 12 is driven to zero, reso-
nant behaviour is observed at a frequency just below the first eigenfrequency
of the uncontrolled system, whereas the first new resonance frequency is visible
in-between the second and third eigenfrequencies of the uncontrolled system
when sensor 4 is the error sensor.

The output of the single channel controller is proportional to the FRF
H,/H., where Hy and H. are the FRFs from the point force and control
voltage, respectively, to the error sensor (see equation (5.2)). The secondary
source will have an unbounded input if the secondary path FRF H. is zero.
This singular condition is avoided by the damping in the system, but since the
damping is only small the secondary input still becomes very large at certain
frequencies.

109 — Sensor 4 1 — Sensor 4 ‘J
="~ Sensor 12 == Sensor 12
100 200 300 400 500 100 200 300 400 500
Frequency [Hz] Frequency [Hz]
(a) Secondary path. (b) Feedforward controller.

Figure 5.5: FRFs of the secondary path and the feedforward controller when
either sensor 4 or 6 is used in combination with patch 6.

In Figure 5.5 the secondary path FRF H. and the FRF of the feedforward
controller H;/H, are shown for the two single channel control configurations.
It can be observed that the output from the controller is very large near
the frequencies that correspond with the anti-resonance frequencies in the
secondary path FRF. A comparison of Figures 5.4 and 5.5(b) reveals that at
the same frequencies the results for the sound power show resonant behaviour.
An interpretation of this effect is that because there is a “weak” transfer
between the secondary source and the error sensor, the control input must be
very large in order to cancel the response at the error sensor. Although there
is a perfect cancellation of the plate vibration at the error sensor, the overall
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plate vibration increases due to the large control inputs, thus leading to high
sound power levels. This effect can also occur if a microphone is used rather
than a velocity sensor, as shown in the work of Burdisso and Fuller [69, 70].

A very large output from a single channel controller can be prevented by
adding an effort weighting term to the error criterion: J = |v,|? + W, |v.|?.
This error criterion is in fact the single channel version of equation (5.5). Effort
weighting has the effect of preventing small reductions of the error signal at
the expense of a large secondary input. A similar effect is obtained when a
second error sensor is used, without weighting of the secondary input. It is
then required that the anti-resonance frequencies in the two secondary path
FRF's do not coincide, or else the secondary input will still be very large. Both
methods have the effect that the output from the error criterion is no longer
reduced to zero.
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Figure 5.6: Preventing resonant behaviour of single channel feedforward con-
troller by effort weighting or by adding a second error sensor.

In Figure 5.6 the performance of the original configuration, which consists
of sensor 4 and patch 6, is compared with two alternative controllers, one
implemented with control effort weighting and one implemented with a second
error sensor (sensor 12). It can be observed that the resonant behaviour,
which is clearly visible near frequencies of 180 Hz and 330 Hz for the original
configuration, is not present in the case of the alternative controllers. On the
other hand, in the low frequency range the reduction in radiated sound power
is less, when compared to the original configuration.
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5.3.2 Multiple channel control

As a next step, feedforward controllers consisting of multiple secondary sources
and multiple error sensors are considered. In contrast to the single channel
control system described previously, which used a velocity error sensor, the
multiple channel control system is equipped with error sensors that measure
the acoustic pressure in front of the plate. The error criterion is defined as
the sum of the squared amplitudes of the field pressures: J = ptp. Again the
primary excitation of the structure is a point force (unit amplitude).
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Figure 5.7: Sound power without control (—) and when the field pressure is
minimised at nine error sensors (-----), at fifteen error sensors (- - -), or the
sound power (—) is minimised with one, two, four or eight secondary sources.

Figure 5.7 the performance of several multiple channel configurations are

compared. The control system consists of either one secondary source (patch 6),
two secondary sources (patches 3 and 6), four secondary sources (patches 1,

3,

6 and 8) or all eight secondary sources (see Figure 5.3). Three error cri-
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teria are considered: minimisation of the pressure at nine error microphones
(microphones 1, 2, 3, 7, 8, 9, 13, 14 and 15), minimisation of the pressure at
all fifteen error microphones, and minimisation of the sound power. For each
configuration of the secondary sources, the control performances associated
with these error criteria are compared to the case when no control is applied.

The results show that, in general, the performance improves with an in-
creasing number of secondary sources. That is, the frequency range in which a
significant reduction of the sound power is achieved broadens if more secondary
sources are used. The reduction obtained with a control system consisting of
one secondary source and nine (or fifteen) error microphones is close to the
best possible reduction with this secondary source. Apparently, the minimi-
sation of the near-field pressure is a good strategy for reducing the sound
power at low frequencies. If more secondary sources are used, a larger offset
between the best possible performance and the performance associated with
the minimisation of pressure is found. Also, the reduction in sound power
of a controller with microphone error sensors becomes more sensitive to the
number of sensors. More sensors are then needed to “converge” to the best
possible performance.

The effect of resonant behaviour, such as found with single channel control,
cannot be observed in Figure 5.7. It can, however, also occur in multiple
channel feedforward control systems, for example if there are as many error
sensors as secondary sources. Such behaviour is encountered if the matrix A
in the quadratic Hermitian formulation, see equation (5.6), is ill-conditioned
or singular. The results given in Figure 5.7 all correspond to configurations
with more error sensors than secondary sources. It must be noted that using
more error sensors than secondary sources does not necessarily prevent the
controller from producing very large outputs. For example, as a result of bad
placement of the error sensors, matrix A can still become singular at certain
frequencies. Such a situation can, however, be prevented with control effort
weighting.
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5.3.3 Radiation modes

It can be inconvenient or impossible to place microphones in front of the plate
surface. One alternative approach, which has received considerable attention
in the literature, is to measure the vibration level with sensors that are in-
tegrated in the structure. It was already demonstrated in Section 3.5 that
control of the structural vibration can result in a poor performance in terms
of the radiated sound power. An alternative method is to weigh the error
signals measured with a grid of velocity sensors such that the resulting error
criterion is a measure for the sound power [57, 58]. Such a sensing strategy is
briefly discussed in this section.

The sensing strategy is based on the radiation modes, which were intro-
duced in Chapter 4. At low frequencies, i.e. when the acoustic wavelength
is large compared to the dimensions of the vibrating surface, the radiation
efficiencies associated with the radiation modes fall off very rapidly with in-
creasing mode number. In Chapter 4, this property was used to obtain a good
approximation of the sound power by taking into account only a small number
of radiation modes. This property also implies that the contribution of only
a few radiation modes must be controlled to obtain high reductions in sound
power. This is illustrated using an error criterion of the form:

J=alA, a,, (5.11)

where a, is the vector with the participation factors of a small number of
radiation modes, and A, is the diagonal matrix with the corresponding radi-
ation efficiencies (see Section 4.3.3). Note that this error criterion represents
an estimate of the radiated sound power.

Figure 5.8 shows the control performance, in terms of sound power, ob-
tained with a control system consisting of four secondary sources (patches 1,
3, 6 and 8) that minimise the error criterion (5.11) when the first siz radiation
modes are included. Besides, the control performance for the error criterion
(J = all'a,) is shown. In this case all radiation modes are weighted equally. It
can be observed that minimisation of the radiation mode error criterion gives
a control performance nearly equal to the best possible reduction in sound
power, except at high frequencies (> 900 Hz). In the case where the radiation
mode participations are weighted equally, the performance degrades a little at
the low frequencies.

Previously, it was assumed that the radiation mode participation factors
are available for control. In practice, the mode participations must be esti-
mated with some kind of sensing strategy. One way to do this is by weighting
the error signals from a grid of velocity sensors by the radiation mode shapes.
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Figure 5.8: Control performance for minimisation of the participations of six
radiation modes (weighted and unweighted) with four secondary sources (patches
1, 3, 6 and 8).

A disadvantage of using such a “spatial filter” is that the radiation modes
depend on frequency, which would lead to a complicated implementation of
the control system. It is shown by Berkhoff [58] that at low frequencies a
good estimation is made with a set of radiation modes determined at a single
frequency. Furthermore, weighting the estimated participation factors by the
radiation efficiencies has a small influence on the control performance. In line
with these observations, the following error criterion is defined:

J=alla,,  where a,=T,v,, (5.12)
where a, are the estimated radiation mode participation factors, v,, are the
error signals from the velocity sensors and I', is a matrix with frequency
independent radiation modes, at the locations of the velocity sensors.

In Figure 5.9 the performance for minimisation of the error criterion (5.12)
is compared to that of the error criterion defined as the sum of the squared
amplitudes of the surface velocities (J = vilv,). All fifteen velocity error
sensors on the plate are used and the spatial filter is constructed with the first
six radiation modes at 50 Hz. In the low frequency range, a better performance
is obtained when using the frequency independent spatial filters. Besides the
improved performance, this approach has the practical advantage that the
number of input channels to the controller is smaller, i.e. equal to the number
of radiation modes included.
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Figure 5.9: Effect of using six frequency independent radiation modes to filter
surface velocities measured with fifteen error sensors (four secondary sources:
patches 1, 3, 6 and 8).

The foregoing approach is related to the concept of reducing the “volume
velocity” of a radiating structure. The volume velocity corresponds to the
shape of the first radiation mode at low frequencies. Therefore, if only one
radiation mode is accounted for in error criterion (5.12), then the (estimated)
volume velocity of the plate is controlled. In this approach, the spatial filter
reduces to summing the outputs from the velocity sensors [14]. Note that
only one secondary source is needed to control the volume velocity. Other
sensing strategies to estimate the volume velocity have also been reported
in the literature, such as with shaped PVDF film [71] or by using multiple
piezoelectric patches [72].
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5.4 Experiments

In this section the practical application of the feedforward control of harmonic
disturbances is considered. The main purpose is to show that the numerical
model is capable of predicting the experimental results rather than to design
a feedforward control system which most effectively reduces the sound radia-
tion. First, the practical implementation of a feedforward controller is briefly
discussed.

5.4.1 Adaptive feedforward control

An important feature of a feedforward control system is that the performance
is very sensitive to small variations in the amplitude and phase of the sec-
ondary inputs. This effect is illustrated in Figure 5.10 for a strip with a single
channel feedforward control system.? In the figure the radiated sound power
is shown as a function of the secondary input v., which is varied in a small
range around the optimal secondary input v™". The sound power has been
normalised with the sound power without control. The results, which show
the control performance when the strip is excited at the first, second or third
eigenfrequency of the uncontrolled system, clearly indicate that for an optimal
performance the secondary input must be set with close precision.
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Figure 5.10: The effect of a suboptimal secondary input on the control perfor-
mance, in terms of sound power, of a single channel feedforward controller.

The optimal secondary input depends on the primary source and on the pri-
mary and secondary path FRFs (see for example equation (5.2)). In practice
the characteristics of the primary source are often non-stationary (e.g. change

3A more detailed analysis of this strip problem can be found in Section 3.5.
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of frequency or amplitude). The primary and secondary paths will also vary
slowly in time due to changes in environmental conditions (e.g temperature).
A time-invariant feedforward controller, designed using the procedure pre-
sented in Section 5.2, will perform suboptimally as a result of time-variant
behaviour of the system under control. Since the performance is very sensitive
to small amplitude and phase mismatches of the secondary source, even small
changes in the behaviour of the system can significantly degrade the control
performance. A feedforward controller is therefore in general implemented as
an adaptive controller, which is able to track changes in the system.

Reference signal - + Error signal
Primary »
path
/ +
Digital Secondary
filter path
Adaptive
algorithm

Figure 5.11: General block diagram of an adaptive feedforward control system.

An adaptive feedforward controller is usually implemented on a DSP, which
allows easy adjustment of the control action. An electronic controller running
on a DSP is referred to as a digital filter. A general block diagram repre-
sentation of an adaptive feedforward controller is shown in Figure 5.11. The
adaptive control system involves two basic parts: a digital filter whose out-
put drives the secondary source (assuming a single channel system), and an
adaptive algorithm that adjusts the coefficients of the filter.

An update of the digital filter is determined from the reference signal, but
also from the error signal. It is stressed that the purpose of this “feedback
path” is different from what is normally done in feedback control (see also
Chapter 6). In a feedback controller, the control input is directly derived
from the error signal. In an adaptive feedforward controller, the feedback
path is used only to adjust the way in which the control input is derived from
the reference signal. If for instance the error sensor is damaged, then the
adaptive feedforward controller still operates, although it can no longer adjust
to changes. If the same happens to a feedback controller, the control input
becomes zero, i.e. the controller is turned off.

It is usually the goal to adjust the filter in such a way that the error
signal is reduced to zero. There are various combinations of digital filters and
adaptive algorithms for both broadband and narrowband control problems
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(see the textbooks of Kuo and Morgan [73], and Nelson and Elliott [6]). One
of the most popular implementations is the so-called filtered-z LMS algorithm.
In this work a narrowband version of this algorithm, which is often referred
to as adaptive notch filter, is used. A description of the adaptive notch filter
is included in Appendix E.

5.4.2 Experimental setup

The experimental setup used for validation of the numerical model in Chap-
ter 4 was also used in the feedforward control experiments. Most of the hard-
ware in the experimental setup was already discussed in Section 4.4.1. The
adaptive notch filter was implemented on a dSPACE DS1103 controller board.

Controller board

——

dSPACE| | |
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Nexus amplifier /A == \
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Voltage amplifier

Figure 5.12: Setup for experiments with control. Hardware that is used to
monitor the control performance is not shown (see Figure 4.8).

One of the two patches on the plate served as the primary source in the
experiments. This type of disturbance excitation is not very realistic but
allows a comparison of experimental and numerical results since the excitation
due to a patch is well defined. The other patch was the secondary source; the
control system had one secondary input. The effect of feedforward control was
considered for a number of cases, where either accelerometers or microphones
were used as error sensors. For each case, the adaptive notch filter was tested
at several frequencies. At each frequency, after convergence of the controller,
the sound power radiated by the plate was measured with the sound intensity
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method. The scanning method was used to obtain the space-averaged sound
intensity (see Section 4.4.4).

A number of general remarks are made regarding the implementation of
the adaptive notch filter:

e The sample frequency of the dSPACE controller board was 20 kHz.

e The harmonic signal driving the primary source was provided by the
dSPACE controller board. The same signal was used as the reference
signal for the adaptive notch filter, thus no sensing device was used
to detect the disturbance frequency. Furthermore, the frequency was
adjusted stepwise.

e The estimation of the secondary path FRF's, used by the adaptive notch
filter, were determined off-line, i.e. before the experiments with control
were conducted. The secondary path FRFs were measured in the fre-
quency range of interest using the DSPT SigLab analyser. For each fre-
quency, before the adaptive notch filter was turned on, the corresponding
amplitude and phase angle of a secondary path FRF were set.

e No weighting of the error signals (performance weighting®) and no weight-
ing of the secondary inputs (effort weighting) was performed. Because
there was no effort weighting, the effect of introducing new resonance
frequencies caused by the feedforward controller could be investigated
(see Section 5.3.1).

The current implementation of the adaptive notch filter was sufficient for
studying the general properties of narrowband feedforward control. It is how-
ever not suitable for a practical problem since the filter cannot adjust to
changes in the primary disturbance (e.g. frequency) or changes in the sec-
ondary path. More advanced implementations of the adaptive notch filter,
which do include these features, can for instance be found in reference [73].

5.4.3 Results

The performance of the adaptive notch filter was measured for sensor arrange-
ments consisting of either one or two accelerometers mounted on the plate,
and one or two microphones placed in front of the plate. In all four cases one
secondary source was used to attenuate the response at the error sensors. The
locations of the primary and secondary sources and the locations of the error
sensors are given in Figure 5.13.

4Note that performance weighting is only of interest if there are at least two error sensors.
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Figure 5.13: Locations of primary and secondary sources (patches) and error
sensors (accelerometers or microphones). Locations of the patches can be found
in Figure 4.9.

For each arrangement of the error sensors, the adaptive notch filter was tested
at about 35 frequencies in the range up to 500 Hz. At each frequency, the sound
power radiated on one side of the plate was measured in order to evaluate
the control performance. The complex amplitude of the signal driving the
primary source was also measured in order to provide an absolute comparison
between the numerical and experimental results. Also, the signal driving the
secondary source was measured in order to determine the control effort. The
performance of the controller was also predicted with a numerical model. More
details regarding the numerical model of the experimental setup can be found
in Section 4.4.2.

Structural error sensing

First, the control systems with one and two accelerometers are considered.
Figure 5.14 shows the predicted and measured control performances in terms
of the radiated sound power. The sound power due to the primary source
operating alone is also depicted (no control).” It is important to note that the

5The sound power due to the primary source alone shown in Figure 5.14(b) was measured
with a high frequency resolution and using the discrete point method, whereas the results
with control were measured at discrete frequencies using the scanning method.
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results in the figure represent the sound power when a unit voltage is applied to
the primary patch. The measurements were carried out using primary inputs

up

to 30 V, thus the actual sound power levels are higher. In Figure 5.15 the

voltage applied to the secondary patch is shown relative to the voltage applied
to the primary patch.
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Figure 5.14: Predicted and measured performances of a narrowband feedforward
controller with one accelerometer and with two accelerometers.
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Figure 5.15: Predicted and measured values of the secondary patch voltage v,
relative to the primary patch voltage v,.
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In general, the numerical and experimental results show the same trends. The
following observations can be made regarding the predicted and measured
behaviour of the controlled systems:

e The results for the controller with one accelerometer clearly show reso-
nant behaviour at frequencies not corresponding to the eigenfrequencies
of the uncontrolled system, i.e. near frequencies of 120 Hz, 250 Hz and
450 Hz. As shown in Figure 5.15(a), a high control voltage is required at
such a frequency in order to cancel the acceleration signal. The overall
vibration level of the plate is increased and, as a result, the sound power
level becomes very high. It was shown in Section 5.3.1 that these “new”
resonance frequencies correspond to the anti-resonance frequencies in the
secondary path FRF.

e With a second accelerometer, the effect of resonant behaviour is pre-
vented. A comparison of Figures 5.15(a) and 5.15(b) reveals that the
secondary input is much smaller near frequencies of 120 Hz, 250 Hz and
450 Hz if two accelerometers are used. The sound power is reduced by
more than 15 dB at the first, third and eighth eigenfrequencies of the
uncontrolled system (i.e. at 111 Hz, 218 Hz and 428 Hz). However,
for some frequencies in the range between 300 and 400 Hz the radiated
sound power is significantly increased by the feedforward controller.

The plate vibration response of the controlled system was measured at several
interesting frequencies with the laser vibrometer in a grid consisting of 13 x 7
points (see also Section 4.4). The experimental results are shown together with
the numerical results for the control systems with one and two accelerometers
in Figures 5.16 and 5.17, respectively. Each vibration shape shown in the
figures has its own scaling (for clarity), but one must be aware that there is a
significant difference in vibration level between the uncontrolled and controlled
systems. A second important note is that either the real part or the imaginary
part of the transfer between the primary input voltage and the normal plate
displacement is shown. Since the damping is small, in off-resonance frequency
ranges the real part is much larger than the imaginary part (nearly 0° or 180°
phase shift). In a resonance frequency, however, the imaginary part of the plate
response is much larger (nearly 90° phase shift, proportional damping). It is
indicated in the figure whether the real or imaginary part of the displacement
response is depicted.

In the case of the control system with one accelerometer, the plate re-
sponse was measured at the new resonance frequencies of the controlled system
(118 Hz, 244 Hz and 450 Hz). The results are shown in Figure 5.16, together
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Figure 5.16: Normal plate displacement shapes without control (numerical)
and with control using one accelerometer (numerical, experimental) for three
frequencies (‘Re’ or ‘Im’ denotes whether the real or the imaginary part is shown).

with the predicted plate responses of the uncontrolled and controlled systems.
The frequencies for which the numerical results are shown correspond to the
predicted new resonance frequencies. These are slightly different from the
frequencies for which the measured plate responses are shown.

There is a good agreement between the predicted and measured vibration
shapes at all three frequencies. It can be seen that the vibration shape is
changed by the feedforward control system. The output from the accelerome-
ter is totally cancelled by the control system so the plate is effectively pinned
at the location of the accelerometer. The three frequencies for which the re-
sults are shown are not far from the first, third and eighth eigenfrequencies
of the uncontrolled system. The corresponding uncontrolled mode shapes are
the 1-1, 3-1 and 5-1 modes, respectively. The vibration shapes of the con-
trolled system are similar to these modes, except that the plate is pinned at
the location of the accelerometer.
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Figure 5.17: Normal plate displacement shapes without control (numerical)
and with control using two accelerometers (numerical, experimental) for three
frequencies (‘Re’ or ‘Im’ denotes whether the real or the imaginary part is shown).

In Figure 5.17 results are shown for the control system with two accelerome-
ters. The frequencies for which the uncontrolled and controlled plate responses
are shown correspond to the first three eigenfrequencies of the uncontrolled
system. The predicted and measured vibration shapes are again in good agree-
ment.

Acoustic error sensing

Next the control systems with one and two microphones are considered (see
Figure 5.13). The predicted and measured control performances are shown
in Figure 5.18. As before, the results correspond to the sound power that is
radiated by the plate when a unit voltage is applied to the primary patch.

It can be observed that the trends in the experimental results are also
predicted by the numerical model. For example, the dip in the sound power
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Figure 5.18: Predicted and measured performances of a narrowband feedforward
controller with one microphone and with two microphones.

when one microphone signal is minimised and the increase of the sound power
at higher frequencies can be observed in both Figure 5.18(a) and 5.18(b).
Furthermore, it is shown in the numerical and experimental results that a
second sensor does not necessarily improve the performance of the control
system.

Near the first, second and eighth eigenfrequencies of the uncontrolled sys-
tem, the sound power is significantly reduced by both controllers. The levels
by which the sound power is reduced are certainly higher than when structural
error sensors are applied. It was also demonstrated in Section 5.3 that better
control performances are obtained with near-field pressure sensing than with
(unweighted) structural error sensing.

5.5 Concluding remarks

In this chapter, feedforward control of harmonic disturbances was considered.
Quadratic optimisation theory (optimal control) is a convenient way to analyse
the behaviour of a feedforward control system with multiple secondary sources
and error sensors. In a numerical study a number of features of feedforward
control were demonstrated, such as the effect of “new” resonances at frequen-
cies different from the eigenfrequencies of the uncontrolled system, and the
improvement of control performance with the number of secondary sources.
An experimental validation was performed for the purpose of showing that
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the numerical model is a useful tool for designing feedforward control systems.
The feedforward controller is implemented as an adaptive controller, which
is able to track small changes in the system under control. For control sys-
tems consisting of one piezoelectric patch and one or two accelerometers or
microphones, a good correspondence between the numerical and experimental
results was found. With these configurations of the feedforward controller, a
significant reduction in sound power is obtained at some of the eigenfrequen-
cies of the system. The level by which the sound power is reduced is certainly
higher with microphones than with accelerometers. However, in practice it
can be inconvenient or impossible to place microphones in front of the struc-
ture. An interesting alternative to this is to use vibration sensors integrated
within the structure (e.g. accelerometers) whose error signals are weighted
by spatial filters, i.e. the radiation modes at a fixed frequency. It was shown
numerically that this approach can give improved control performance and
furthermore reduces the dimensionality of the controller when compared to a
control system which minimises the unweighted error signals.
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Chapter 6

Feedback Control

6.1 Introduction

In the previous chapter it was assumed that information is available concerning
the primary disturbance excitation. It is then possible to apply feedforward
control. In many applications, however, the disturbance excitation is unknown
or cannot be directly observed. In such cases where no suitable reference
signal for feedforward control is available, a feedback control strategy can be
employed to reject the disturbance excitation.

A major problem in the design of feedback control systems is to guarantee
stability of the controlled system even when it is subject to changes in envi-
ronmental or operational conditions. The general way to decrease the risk of
instability is to use collocated actuator/sensor pairs. An actuator/sensor pair
is referred to as collocated if the actuator and sensor are physically located
at the same place and are energetically conjugated. A well known example
in active vibration control is the combination of a point force actuator and a
velocity sensor. This chapter is devoted to the implementation of a feedback
control system consisting of a piezoelectric actuator patch and an accelerom-
eter. This actuator/sensor pair is essentially not collocated, though it does
possess properties similar to those of collocated systems.

The stability robustness is furthermore to a large extent determined by
the type of feedback strategy. In this work the “classical” method direct ve-
locity feedback (DVF) is applied because of its ease of implementation and
good stability properties. Direct velocity feedback control attempts to in-
crease the damping in the structure. As a result, the structural response to
primary disturbance excitations is reduced, indirectly reducing the sound radi-
ation. This approach can be attractive to reduce the sound radiation of lightly
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damped structures. In the case of multiple pairs of piezoelectric patches and
accelerometers, the control system consists of multiple independent single-
input-single-output (SISO) feedback loops. This approach will be referred to
as decentralised velocity feedback control.

This chapter starts with a brief discussion on the advantages of using collo-
cated rather than non-collocated actuator/sensor pairs (Section 6.2). In Sec-
tion 6.3 the combination of a piezoelectric actuator patch and an accelerometer
is considered. This actuator/sensor pair is not truly collocated, but it is shown
that such a pair exhibits similar behaviour as that of collocated systems. The
analysis is extended in Section 6.4 to a plate structure with multiple piezoelec-
tric patch/accelerometer pairs. In a numerical study, the control performance
in terms of sound power reduction of a decentralised velocity feedback con-
trol system is considered. In Section 6.5 the practical implementation of the
control system is discussed. A digital controller and an analogue controller
are tested on the same experimental setup as used in the previous chapters.
The measured control performance of these controllers is compared with the
performance predicted using the numerical model.

6.2 Collocated feedback control

A major problem in the design of feedback control systems is to guarantee the
stability of the controlled system. The general way to decrease the risk of a
feedback control system becoming unstable is to use collocated actuator /sensor
pairs [4]. An example of such a system, which consists of a point force actuator
and a velocity sensor (both in the transverse direction), is shown in Figure 6.1.

Controller Velocity
G sensor
v

Point force

Structure actuator

Figure 6.1: A feedback control system with a collocated point force actuator
and point velocity sensor.

Collocated actuator/sensor pairs are widely applied in active control of sound
and vibration and their advantages are discussed for instance in the book
of Preumont [4]. For the sake of completeness a brief discussion is included
here. A block diagram representation of a SISO feedback control system is
shown in Figure 6.2. It is common in (classical) control theory to use the
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Laplace transform for analysing feedback control systems, since it can, in con-
trast to the Fourier transform, be used to represent both stable and unstable
systems [6, 51].

Primary path

va($)
— Hy(s)

Secondary path

ve(s) { y(s)
H.(s) - —
Controller
—G(s)

Figure 6.2: Block diagram of a single channel feedback control system.

Under the assumption that all system components are linear, in the Laplace
domain the output from the error sensor y(s) can be expressed as:

y(s) = Ha(s)va(s) + He(s)ve(s), (6.1)

where v4(s) and v.(s) are the primary and secondary inputs, respectively,
and H,(s) and H.(s) are the primary and secondary path transfer functions,
respectively. In feedback control the secondary input is derived directly from
the sensor output and can be written as:

ve(s) = —G(s)y(s), (6.2)

where G(s) is the Laplace transform of the controller transfer function. Equa-
tions (6.1) and (6.2) can be combined to obtain the transfer function with
feedback control between the primary input and the sensor output:

Hy(s)

y(s) = mvd(s) = H(s)va(s), (6.3)

where H (s) is the closed-loop transfer function.

The stability of this SISO system can be determined by an inspection of
the poles of the closed-loop transfer function. If the poles of H(s) are denoted
by p; and the zeros are denoted by z;, the closed-loop transfer function can be
written in the factored form:

_ H:)il (s —2)
H(s)=h —H?:1 G_p) (6.4)
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where h is a constant gain. The poles and zeros are either real numbers or
conjugate pairs of complex numbers. A convenient definition of stability is
that a system should produce a bounded output when subjected to a bounded
input. This condition is satisfied only if all poles of H(s) have negative real
parts [51].

In the following the stability of SISO feedback control systems is investi-
gated with the root locus method. The root locus shows the evolution of the
poles of the closed-loop system as a function of some parameter of the con-
trol system (e.g. feedback gain). For the control system described by equa-
tion (6.3), the root locus is the set of values of s for which the characteristic
equation:

1+ H.(s)G(s) =0, (6.5)

is satisfied as the parameter goes from zero to infinity. This equation is deter-
mined only by the secondary path and controller transfer functions. Therefore
no knowledge of the primary excitation is required in a stability analysis. The
root locus is presented in the so-called complex plane (see e.g. Figure 6.3), in
which the real part of s is shown along the horizontal axis (real axis) and the
imaginary part of s is shown along the vertical axis (imaginary axis). A system
is stable if all of its poles lie in the left half of the complex plane (Re(s) < 0).
The complex plane is symmetric about the real axis (Im(s) = 0), so only the
upper part of the complex plane will be shown in the root locus plots.

In the case of direct velocity feedback (DVF) control, the signal provided
to the actuator is proportional to the velocity measured by the error sensor,
i.e. the controller is a fixed gain G(s) = ¢g. The root locus of a DVF control
system with point force actuator and velocity sensor is shown in Figure 6.3.
The evolution of the poles of the closed-loop system is shown for positive
values of the feedback gain g. In the figure also the open-loop poles and zeros
of the transfer function gH,(s) are shown.! The zeros and poles are shifted
somewhat into the left half of the complex plane (Re(s) < 0) because of the
small amount of (modal) damping in the model.

As the feedback gain is increased, the poles move further into the left half
of the complex plane. This indicates an increase in the damping in the system,
which is typical for a DVF strategy. If the gain is increased beyond a certain
value, the poles move back towards the imaginary axis, to the zeros of the
transfer function gH (s). A physical interpretation of this effect is that for an
infinite feedback gain, the point where the sensor is located remains fixed: the
control acts as a support, thereby not adding any damping to the structure.

!The zeros of the transfer function gH.(s) are, in general, not equal to the zeros of the
closed-loop transfer function described by equation (6.3).
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Figure 6.3: Typical root locus of a collocated point force actuator and velocity

sensor with proportional feedback gain (¢ = 0.1, £ = 0.2, £ = 0.3 indicate lines
of constant damping).

A further observation is that the maximum amount of damping that can
be achieved is different for each pole. The location of the collocated actu-
ator/sensor pair strongly determines the shape of the root locus and thus the
amount of damping that is associated with a certain pole. In general, the
poles and zeros should be well separated in order to obtain significant damp-
ing ratios. From a mechanical point of view, this implies that the actuator
and sensor must couple well into the vibration mode associated with a certain
pole. In the ultimate case, where the location of the actuator/sensor pair cor-
responds to a nodal line, the control system will not be able to add damping
to that mode.

The root locus shown in Figure 6.3 stays in the left half of the complex
plane. This means that the system is stable for all positive feedback gains g [4]
(the loci associated with the “high frequency” poles, which are not shown in
the figure, also stay in the left half of the complex plane). One must be aware
of that the poles would move into the unstable, right half of the complex
plane if the feedback gain were varied from 0 to —oo. The minus sign has
been included in the feedback law (6.2) so that positive values of g correspond
to a stable system.

A typical root locus of a non-collocated DVF control system is shown in
Figure 6.4. It can be seen that the locus departing from the third pole moves
through right half of the complex plane (Re(s) > 0). Therefore the closed loop
system is unstable for certain values of g.

It can be observed in Figure 6.3 that the collocated system has alternating
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Figure 6.4: Typical root locus of a non-collocated point force actuator and
velocity sensor with proportional feedback gain.

poles and zeros near the imaginary axis, i.e. there is a zero in-between two
subsequent poles. Because of this property, a control scheme such as DVF
has guaranteed stability [4]. The alternating pole-zero pattern does not hold
for the non-collocated control arrangement, as can be seen in Figure 6.4. The
importance of this property with respect to stability can be explained with
a frequency response approach. The closed-loop transfer function (6.3) is
transformed to the frequency domain by substitution of s = jw:

Hy(jw)

i) = 17 (oG Y40 (6.6

At the point of neutral stability, where the root locus crosses the imaginary
axis, the following relations hold:

|H.G| =1, Z(H.G) = —180° (degrees), (6.7)

where the explicit notation of frequency dependence has been dropped. The
closed-loop system is stable if the phase angle Z(H.G) is larger than —180°
for all frequencies where the magnitude |H.G| is larger than 1. The system is
unstable if this condition is violated.

The open-loop FRF gH,. of the collocated and non-collocated configura-
tions are shown in Figure 6.5 (¢ = 1). For a lightly damped system, with
poles and zeros close to the imaginary axis, the poles can be recognised in
a frequency response as the resonance frequencies, whereas the zeros corre-
spond to the anti-resonance frequencies. Accordingly, a resonance frequency
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Figure 6.5: Open-loop FRF gH, of the collocated and non-collocated configu-
ration of Figures 6.3 and 6.4 for g = 1.

produces a phase shift of nearly —180° (phase lag) and an anti-resonance fre-
quency produces a phase shift of nearly +180° (phase lead).
In the case of the non-collocated setup there is no anti-resonance frequency
between the second and third resonance frequencies (or no zero between the
second and third pole, see Figure 6.4). As a consequence, the phase angle
becomes smaller than —180°. Thus, according to the stability criterion men-
tioned previously, for DVF control the closed-loop system will be unstable if
lgH.| > 1.2 For the collocated setup, however, the phase is always between
—90° and +90° because of the alternating pole-zero pattern, which implies
that the closed-loop system is stable for all values of g. It is this property that
makes collocated systems attractive for active damping purposes.

So far the proportional feedback of velocity was considered. Alternatively,
a controller can be constructed such that its output has three components,
which are proportional to the displacement, velocity and acceleration. In
time-domain notation, the control law is:

Ve(t) = —gau(t) — gy u(t) — ga i(t), (6.8)

where g4, g, and g, are the feedback gains associated with the displacement,
velocity and acceleration, respectively. If only one sensor is available to mea-
sure velocity, the displacement and acceleration can be derived using an elec-
tronic integrator and differentiator.® It is easy to show that if the actua-
tor/sensor pair are collocated, the controller effectively modifies the mass,

2A change in g corresponds to a shift of the magnitude plot along the vertical axis.
3This control strategy would then be what in control theory is referred to as ‘proportional-
integral-derivative’ or PID-control.
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damping and stiffness of the mechanical structure. The behaviour of the
closed-loop system is the same as that of the mechanical system shown in
Figure 6.6, where a mass-spring-damper combination is attached to the strip
with spring stiffness g4, viscous damping constant g; and mass g,.

u(t) La() L) ;
g G
[94] [9.] [o.] - ' |
1 1 . u 7
| é_ é_ Ga
+ —

Figure 6.6: Mechanical equivalent of collocated displacement, velocity and ac-
celeration feedback.

AN\

In the root locus of a control system with an output proportional to either
acceleration or displacement, the poles move in a straight line towards the
zeros. In other words, the damping of the structure is not increased. This
is as expected since mass and stiffness, which are the mechanical equivalents
of such control strategies, can store energy rather then dissipating it. The
proportional feedback of displacement or acceleration alone is therefore not
very attractive for reducing the sound radiation of lightly damped structures.

The property of alternating poles and zeros exhibited by a collocated ac-
tuator/sensor pair provides the theoretical basis for the design of feedback
controllers with guaranteed stability. An important practical limitation to
this concept, however, is the inevitable phase lag in the transfer function
H_.(s)G(s) due to sampling in digital controllers and dynamics of amplifiers,
actuators and sensors. Therefore, in practice there is always a frequency where
the phase of H.G will become smaller than —180°. The only way of preventing
instability of the closed-loop system is that a significant roll off appears in
H.(s)G(s) in order that the magnitude of the associated FRF is well below 1
at that frequency. More details on this problem are given in Section 6.5.
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6.3 Collocated control with piezoelectric patches

6.3.1 Collocation concepts

The practical advantages of piezoelectric actuator patches compared to point
force actuators were already mentioned in Chapter 2. Figure 6.7 shows three
collocation concepts that have been suggested in the literature for implement-
ing feedback control with piezoelectric patches. These three concepts are sum-
marised below:

(a) A matched piezoelectric actuator/sensor pair, which consists of two piezo-
electric patches with the same shape and size that are located at the same
position, but on either side, of the structure [24, 25].

(b) A piezoelectric sensoriactuator, which is a piezoelectric patch that works
simultaneously as actuator and sensor [74].

(¢) The combination of a piezoelectric actuator patch and an accelerometer,
where the accelerometer is located at the centre of the patch to measure
the normal velocity [75].

It is noted that in order to implement DVF control for concepts (a) and (b),
the sensor output must be differentiated, whereas the sensor output must be
integrated for concept (c).

Piezoelectric
actuator G Sensoriactuator G
1
(b)

/: [ 1
' il
Piezoelectric
sensor

ANNY
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(@)

Piezoelectric
actuator G

ZII [ 1 Il

A 178
Accelerometer ITI—
(c)

Figure 6.7: (a) Piezoelectric actuator/sensor pair, (b) Piezoelectric sensoriac-
tuator, (c) Piezoelectric actuator patch with accelerometer.
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The matched piezoelectric actuator/sensor pair seems to be an attractive con-
cept but there is an important drawback. In this arrangement both the in-
plane and out-of-plane vibration modes are excited and measured by the actu-
ator and sensor, respectively. It has been shown for instance by Lee, Gardonio
and Elliott [42, 76] that the FRF of the actuator/sensor pair is not strictly
positive real because of the in-plane vibration coupling. At low frequencies
the phase angle of the FRF is limited to values between —90° and +90°, but
in the range above the eigenfrequency of the first in-plane mode* the phase
angle is limited to values between —270° and —90°. Furthermore, at the first
in-plane resonance frequency the FRF has a much larger amplitude than at
the low frequencies. Therefore the implementation of a DVF strategy leads
to a stability problem. This problem can be circumvented by using a strategy
with sufficient roll off, such as positive position feedback (PPF) considered by
Petitjean, Legrain, Sion and Pauzin [77] or integral force feedback (IFF) con-
sidered by Henrioulle and Sas [26]. However, at low frequencies the in-plane
coupling effect is similar to that of a static feedthrough which leads to closely
spaced poles and zeros and, as a result, limits the control performance.

The sensoriactuator is in contrast to the previous concept a truly collocated
system. An arrangement with a single patch such as shown in Figure 6.7 suffers
from in-plane coupling effects, but these can be overcome by placing a second
sensoriactuator on the opposite side of the structure (see also Section 3.3.2).
The charge response of the sensoriactuator consists of two contributions: the
charge as a result of the mechanical deformation of the structure and the
charge as a result of the voltage applied across the piezoelectric capacitance.
The latter contribution is more significant and must be removed from the sen-
sor output in order to obtain a signal proportional to the structural response.
With an electrical circuit it is possible to resolve the part related to the me-
chanical response. However, this circuit must be adaptive in order to cope
with variations in environmental conditions and operation [74]. This requires
a rather complex circuit which is not always attractive for practical implemen-
tation. The application of adaptive piezoelectric sensoriactuators in feedback
control has been demonstrated for instance in references [78] and [79], but is
not considered in this work.

The combination of an actuator patch and an accelerometer (a patch/accelero-
meter pair) is again not a truly collocated setup. However, this pair does not
suffer from in-plane coupling effects since the accelerometer measures the out-
of-plane vibration component. It is therefore possible to implement the DVF

4In a thin plate structure the in-plane modes have much higher frequencies than the
out-of-plane modes.
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strategy. The consequences of this setup being not truly collocated are further
discussed in the following section.

6.3.2 Patch/accelerometer pairs

A typical root locus of a control system with a piezoelectric actuator patch,
accelerometer and DVF controller is shown in Figure 6.8. As before, the evo-
lution of the poles of the closed-loop system is shown as a function of the
feedback gain. The root locus was calculated using a reduced FEM model
of the setup (see Chapter 4). In order to implement DVF control, the accel-
eration signal must be integrated to velocity. In practice, integration can be
performed by the controller but also by the conditioning amplifier connected to
the accelerometer (see Section 6.5). The position of the patch/accelerometer
pair is equal to that of the collocated force/velocity pair considered previously,
such that it is allowed to compare the two control arrangements.

1500. Y —@

Accelerometer

m(s) [rad/s]

ANNY

= 500

— Residual mode

OH “= = No residual mode —HO
-300 ~200 ~100 0
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Figure 6.8: Root locus of a patch/accelerometer pair with DVF control.

The open-loop transfer function of the patch/accelerometer pair shows an
alternating pole-zero pattern, similar to that of a truly collocated system.
As a consequence the closed-loop system is stable for the frequency range
shown in the figure (up to 300 Hz), i.e. the root locus moves through the
left half of the complex plane. A comparison between the root loci shown in
Figures 6.3 and 6.8 reveals that the amount of damping obtained with the
patch/accelerometer pair is of the same order as for the force/velocity pair.
However, the damping associated with the individual poles can be significantly
smaller or higher for the two arrangements. For example, for this location of
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the secondary source, the damping associated with the first pole is much higher
for the force/velocity pair than for the patch/accelerometer pair.

Figure 6.8 also depicts the root locus determined with a model not ac-
counting for the residual mode. It was shown in Section 4.2.3 for a similar
setup, that the residual mode is particularly important for an accurate pre-
diction of the anti-resonance frequencies. The effect of neglecting the residual
flexibility is in the complex plane observed as a shift of the zeros with respect
to their true locations. It can be seen that the root locus travels further into
the left half of the complex plane for the model without the residual mode.
Therefore, the closed-loop damping is overestimated.

Stability

The combination of a piezoelectric actuator patch and an accelerometer is not
truly collocated, i.e. the property of alternating poles and zeros holds in a
limited frequency band. Therefore, in the case of DVF control the stability of
the closed-loop system is not guaranteed. It is possible to discriminate between
two causes of an unstable closed-loop system, which are here referred to as a
“high frequency” stability problem and a “low frequency” stability problem.
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Figure 6.9: High frequency (left) and low frequency (right) instabilities for a
piezoelectric patch/accelerometer pair with DVF control.
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The first case is shown in Figure 6.9(a). It can be seen that there is a zero
in-between the first and second poles but not in-between the second and third
poles. This effect is related to the ratio between the patch length and the
structural wavelength. Because in this example the patch is relatively large,
the third pole already becomes unstable. For smaller patches, this instability
moves up to higher frequencies, i.e. the alternating pole-zero pattern holds
in a larger frequency range (see Figure 6.8). The frequency up to which the
alternating pole-zero pattern holds can be controlled by the size of the patch.

The second case is shown in Figure 6.9(b). Now the instability occurs
at a low frequency. The first and second poles are preceded by a zero, and
as a result these poles become unstable with DVF control. In this case the
instability occurs because the actuator /sensor pair is located close to a clamped
edge. This type of instability can be prevented by proper placement of the
pair, i.e. not close to a clamped edge. It is stressed that this stability problem is
related to the type of boundary conditions. In case of simply support boundary
conditions, this effect does not occur.
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6.4 Decentralised velocity feedback control

Feedback control of structure-borne sound radiation has been dealt with by
many researchers in recent years. A selection of relevant papers on this topic
is given in Table 6.1. The list is certainly not complete but it gives an idea
of the various actuator/sensor configurations and control strategies that have
been considered. It is common to use collocated actuator/sensor pairs but
the feedback law that derives the control inputs from the sensor outputs can
be implemented in many ways. Feedback control strategies are often divided
into two classes based upon whether or not the feedback law relies on a model
of the system. The two classes are referred to here as model-based and non-
model-based control, but in the literature terminology such as modern and
classical control or high-authority and low-authority control is also used.

The direct velocity feedback controller considered previously does not rely
on a model and is therefore robust to changes in environmental conditions.
For instance, the control system remains stable if the eigenfrequencies shift as
a result of a change of temperature. This may however be problematic for a
model-based strategy such as LQR/LQG or Hs/H since an erroneous model
may lead to an unstable system. A further drawback of model-based strategies
is that the practical realisation is quite involved, especially if the model must
capture the dynamics of a lightly damped system with high modal density. On
the other hand, the implementation of a strategy such as DVF is not limited
by computational burdens.

The remainder of this chapter is devoted to the implementation of direct veloc-
ity feedback control. The use of this simple strategy rather than a model-based
strategy is motivated by its good robustness properties and ease of implemen-
tation. The plate with eight surface bonded PZT patches that was considered
in Section 5.3 for feedforward control is also used to investigate the effect of
direct velocity feedback. Eight accelerometers are positioned at the centres of
the patches as shown in Figure 6.10. The voltage applied to a certain patch is
determined only by the accelerometer located at the centre of that patch. In
this way the control system consists of multiple independent feedback loops.
Such an array of independent control units implementing DVF is referred to
here as decentralised velocity feedback control. Similar approaches were fol-
lowed by Elliott, Gardonio, Sors and Brennan [75] and Gardonio, Bianchi and
Elliott [80, 81, 82].
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Figure 6.10: Uniform distribution of actuator patches and accelerometers.

In the case of a control system with multiple actuators and sensors the feedback
law can be written as (frequency domain notation):

ve=—-Gy, (6.9)

where v, is the vector with control inputs, y is the vector with sensor outputs
and G is the matrix with controller FRFs. Provided the control system is
stable, the closed-loop frequency domain response of the error sensors is given
by:

y=I+H.G) 'Hyv,, (6.10)

where H; and H. are the matrices with the primary path and secondary path
FRFSs, respectively, and v is the vector with the primary inputs. It is assumed
that the signals supplied to the controller have already been integrated from
acceleration to velocity. As the control is decentralised and implemented with
direct velocity feedback, G becomes a frequency independent diagonal matrix.
Elliott et al. [75] showed that if a truly collocated system (with force/velocity
pairs) with multiple independent feedback loops is implemented with fixed
gains, then the system is stable provided that each of the individual gains is
positive. In this work the feedback gains are furthermore chosen equal for
all individual feedback loops such that G = g1, where ¢ is a positive fixed
gain. Alternatively, G could be implemented as a fully populated matrix with
fixed gains, as in references [78] and [87]. However, such an approach is less
attractive for practical implementation because of the MIMO nature of this
strategy, and the choice of the feedback gains is also not straightforward.

It was shown in Section 6.3 that stability cannot be guaranteed when the
DVF control system consists of patches and accelerometers (see Figure 6.9).
The stability problem at low frequencies is easily prevented by proper place-
ment of the patches. All eight patches are located sufficiently far away from
the plate edges. The stability problem at high frequencies can be determined
by inspection of the open-loop secondary path FRFs. It was found that the
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phase of all eight FRFs was between —90° and 4+90° in the frequency range
considered in the simulation (up to 1000 Hz).

Optimal feedback gain

An example of the performance of the control system is shown in Figure 6.11.
The primary excitation is due to a transverse point force® (indicated by P in
Figure 6.10). In the figure the sound power is shown without control and when
subject to control using four of the eight feedback loops with various feedback
gains. The sound power levels correspond to a primary force amplitude of
1 Newton.
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Figure 6.11: Performance of four decentralised velocity feedback controllers for
three feedback gains (loops 1, 3, 6 and 8).

The resonance frequencies of the lightly damped plate structure are clearly
visible in the result corresponding to the sound power without control. As
the gain of the four feedback loops is increased, the resonances become more
heavily damped. For a gain of g = 1.0 - 10* V-s/m the sound power is signifi-
cantly reduced at most of the resonances in this frequency range. If the gain
is increased beyond a certain value the response displays new peaks, which
become more pronounced as the gain is increased further. This effect was also
observed in the root locus shown in Figure 6.8. When the gain is varied from
zero to infinity the poles first move away from the imaginary axis, but beyond
a certain gain the poles move back towards the zeros close to the imaginary

5The point force is applied at the same location as in the analysis of feedforward control
presented in Section 5.3.
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axis, which indicates a decrease of the damping. It is noted that the outputs
of the accelerometers monotonically decrease as the feedback gain is increased.
However, the overall plate response and associated sound radiation is minimal
for a certain feedback gain. One could say that for very high gains the plate
is effectively pinned at the sensor locations.

The overall performance of the control system is presented in terms of the
total sound power, which is the sound power integrated over the frequency
band of interest, i.e. up to 1000 Hz in this case. In Figure 6.12 the total sound
power is plotted against the feedback gain for control systems with either two,
four or all eight feedback loops turned on. The results have been normalised
with the total sound power without control, so a negative value represents a
reduction of the total sound power.

at Two controllers

— = Four controllers ~
2t — Eight controllers

Norm. total sound power [dB]

Feedback gain [V-s/m]

Figure 6.12: Total sound power radiated by the plate as a function of the
feedback gain if either two (loops 3 and 6), four (loops 1, 3, 6 and 8) or all eight
feedback loops are operating.

The trends in the figure are similar to those found by Elliott et al. [75] and
Gardonio et al. [80]. A clear minimum in total sound power is observed, which
shifts slightly to the left as the number of feedback loops is increased. It is not
surprising that the reduction in total sound power increases with the number
of feedback loops. The optimal reduction is about 3.6 dB with two feedback
loops, 5.7 dB with four feedback loops, and 7.2 dB with all eight feedback
loops. A further observation is that for high feedback gains the total sound
power with control is higher than it is without control.
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Performance

The performances of the three configurations when operating with the opti-
mal feedback gain are shown in Figure 6.13. In this context, optimal refers
to the gain for which the reduction in total sound power is a maximum (see
Figure 6.12). For the configuration with two feedback loops, some of the res-
onances are damped. Some modes are not observable, i.e. not detected by
the accelerometers, or not controllable, i.e. not excited by the patches, and
the sound power is therefore not reduced at the corresponding eigenfrequen-
cies. By extending the number of feedback loops to four, the performance
is increased. If all eight feedback loops are used the sound power is signifi-
cantly reduced for all efficiently radiating vibration modes in the range up to
1000 Hz. At the individual resonances the sound power is reduced by 20 dB.
The reduction in total sound power is limited to 7.2 dB mainly due to the
high sound power level near 1000 Hz.
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Figure 6.13: Optimal control performance with two (loops 3 and 6,
g=6.5-10% V-s/m), four (loops 1, 3, 6 and 8, g = 5.9 - 103 V-s/m) or all eight
(9 =5.3-10% V-s/m) decentralised velocity feedback controllers.

It is important to note that the DVF strategy simply adds damping to the
system. As a consequence, the vibration level of the structure is reduced,
but the damping mechanism does not necessarily reduce the sound power
radiated by the structure. At some frequencies, mainly in off-resonant regions,
a reduction of the vibration level is accompanied by an increase of the sound
power.
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The results shown in Figure 6.13 are only weakly sensitive to a variation
of the feedback gain. One should be aware that the range along the horizontal
axis in Figure 6.12 is extremely broad. In practice, for a fixed gain (near the
optimal value) the performance will not degrade very much due to changes in
environmental conditions. In other words, there is no need for adaptivity as
was the case for the feedforward strategy considered in Chapter 5.

6.5 Experiments

The direct velocity feedback controller was implemented on the same ex-
perimental setup as used for the feedforward control experiments (see Sec-
tions 4.4.1 and 5.4.2). One of the two patches on the plate serves as the
primary disturbance source (patch 1). An accelerometer is positioned at the
centre of the other patch (patch 2), on the side opposite to where the patch
is bonded. The DVF controller is implemented on this actuator/sensor pair.
In this section the control system is limited to a single feedback loop. Decen-
tralised velocity feedback control will be considered in Chapter 7 for a setup
with two patch/accelerometer pairs.

Since the location of the secondary actuator patch is not close to the
(clamped) plate edges, the low frequency stability problem discussed in Sec-
tion 6.3.2 is of no concern. However, stability at high frequencies is not guar-
anteed with this actuator/sensor pair, as the property of alternating poles
and zeros does not hold at high frequencies. Another source of stability prob-
lems, which is important in practice but was not considered in the numerical
modelling, is the phase lag introduced by the hardware in the feedback loop,
such as the DSP (with A/D and D/A convertors) and conditioning and power
amplifiers. Because of the phase lag, the system will become unstable if the
feedback gain is increased beyond a certain value, which may be well below the
value corresponding to the best possible reduction in radiated sound power.

6.5.1 Implementation

The hardware used for the practical implementation of DVF is shown in Fig-
ure 6.14. The charge output from the accelerometer (B&K 4374) is converted
to a voltage by a B&K 2635 charge amplifier. This amplifier is equipped with
an analogue integrator®, which is used to produce an output proportional to
the velocity. With a high-pass (HP) filter and a low-pass (LP) filter, both of
fourth order, the dynamic range of the charge amplifier can be set.

5The B&K 2690 Nexus amplifier that was used in the experimental setups of Chapters 4
and 5 does not have a built-in integrator.
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Figure 6.14: Experimental setup: digital and analogue implementation of the
feedback control system.

The DVF strategy was implemented as a digital controller and as an analogue
controller. In the case of the analogue implementation the output from the
charge amplifier, proportional to velocity, was fed directly to the voltage am-
plifier (Piezomechanik SVR 1000/3). By manual adjustment of the gain of
this amplifier, the gain in the feedback loop was varied. In the case of the
digital implementation the dASPACE DS1103 controller board was in-between
the charge amplifier and the voltage amplifier. For DVF only a proportional
gain needed to be implemented on the board (the gain of the voltage amplifier
is now fixed). The sample frequency was 25 kHz.

It may seem superfluous to implement this simple strategy in a digital way,
but it is done here to investigate the effect of the phase lag introduced by the
controller board. Note that integration of the acceleration could also be per-
formed on the controller board. However, such an implementation introduces
an additional phase lag in the feedback loop which is directly related to the
sample time. Analogue integration is therefore preferable.

The dynamical behaviour of the voltage amplifier is similar to that of a first
order LP filter. When the transfer function of a collocated actuator/sensor
pair is combined with that of a first order LP filter, the resulting phase re-
sponse is between —90° and +90° in the frequency range well below the cutoff
frequency of the filter, but between —180° and 0° well above the cutoff fre-
quency. In addition, the magnitude response displays roll off above the cutoff
frequency. Such behaviour can be observed in Figure 6.15, which shows the
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measured FRF from the amplifier output (i.e. voltage applied to patch) to
the accelerometer velocity and the FRF from the amplifier input to the ac-
celerometer velocity. The magnitude of the latter FRF has been scaled for an
easy comparison.

-180

200 400 600 800 1000
Frequency [Hz]

Figure 6.15: Measured secondary path FRFs: relative to amplifier output (—)
and relative to amplifier input (----).

The cutoff frequency of the LP filter is determined by the capacitive load
connected to the amplifier. It was found from an inspection of the measured
FRF that for this patch the cutoff frequency is about 650 Hz. A first order
LP filter is modelled by the transfer function:

> 6.11
S+ wLp ( )

where wrp is the cutoff frequency. The influence of the first order LP filter
on the performance of the control system is illustrated in the root locus plot
in Figure 6.16. This result was obtained with the numerical model of the
experimental setup. When the LP filter is included in the feedback loop, the
lobes of the root locus do not travel as far into the left half of the complex
plane. Therefore, the best possible damping is decreased as a result of the
low pass behaviour of the voltage amplifier. Modes with eigenfrequencies well
above the cutoff frequency are no longer damped. The phase is then between
—180° and 0° which implies that the control system effectively feeds back a
signal proportional to the displacement.
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Figure 6.16: Effect of a first order LP filter on the root locus for DVF control.

6.5.2 Results

For both the digital and analogue DVF controllers, the control performance in
terms of radiated sound power was measured for various feedback gains. For
each gain, the sound power radiated from one side of the plate was measured
with the point sound intensity method (5 x 3 grid, see Section 4.4.4). The
total sound power was then calculated by integration of the sound power over
frequency in the measurement range from 86 Hz to 486 Hz. This range includes
the first eight modes of the system, which are all excited by the primary
actuator patch.

In Figure 6.17 the total sound power, when normalised with the total
sound power without control, is plotted against the feedback gain’. First
the discussion is devoted to a comparison of the two experimental results
shown in the figure. For the digital and analogue controllers, the gain was
increased up to the point where the closed-loop system becomes unstable.
The “critical” feedback gain is higher for the analogue controller than for
the digital controller. Additional phase lag in the feedback loop, such as
introduced by the DSP hardware, decreases the frequency for which the phase
of the secondary path FRF (including hardware) becomes smaller than —180°.
Because the magnitude of the secondary path FRF decreases with frequency
(due to roll off ), additional phase lag results in a smaller critical feedback gain.
The critical feedback gain for the digital controller is about 2.3 - 10% V-s/m,
whereas in the case of the analogue implementation the feedback gain can be

"In case of the analogue controller, the gain is not exactly known (manual adjustment).
The gain is determined afterwards from measured FRF data.
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increased further to about 9.1 - 10® V-s/m before the point of instability is
reached. For the analogue controller, the critical point is close to the feedback
gain corresponding to the best possible reduction of the total sound power.
In the range where both controllers are stable, nearly equal performances are
observed.
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Figure 6.17: Predicted and measured total sound powers radiated by the plate
as a function of the feedback gain.

In Figure 6.17 also the control performance calculated with the numerical
model is shown. Results are presented for an ideal controller and for a con-
troller that includes a first order LP filter with a cutoff frequency of 650 Hz.
The effect of the LP filter is a small degradation of the control performance.
More remarkable is how the control performance is underestimated by the
numerical model: the best possible reduction of the total sound power is
2.2 dB in theory (with LP filter) but 4.6 dB in practice (analogue controller).
This result can be explained by means of Figure 6.18, which shows the sound
power as a function of frequency without control, and with control for the
gain corresponding to the best possible reduction of the total sound power.
Figure 6.18(b) reveals that the measured sound power level before control is
most significant for modes three and eight. The total sound power without
control is therefore to a large extent determined by these modes. For the
same modes the sound power level is clearly reduced by the control system,
which in total gives a 4.6 dB reduction of the total sound power. On the
other hand, the total sound power level without control predicted with the
numerical model is more or less determined by modes one, three and four (see
Figure 6.18(a)). The control system is effective in reducing the sound power
at modes one and three but cannot control mode four. Therefore, the total
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sound power reduction is only 2.2 dB in theory. However, the predicted and
measured reductions at the individual modes are of the same order. Note that
the quantitative mismatch between the numerical and experimental results is
due to inaccurate acoustic model. The Rayleigh integral model for predicting
the sound power is based upon the assumption of a baffled plate, whereas the
experiments were conducted without a baffle (see Section 4.4.4).
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Figure 6.18: Predicted and measured performances of the DVF controller.
Model: g = 8.6 - 103 V-s/m, Experiment: g = 7.4 - 103 V-s/m.

The acoustic radiation is clearly reduced by the single DVF controller for
some of the modes in the frequency range up to 500 Hz. For example, in the
experiments the sound power is reduced by 13 dB, 16 dB and 10 dB at the
resonances corresponding to modes one, three and eight respectively. On the
other hand, some of the other modes in this band are not controlled at all.
The 4.6 dB reduction of the total sound power is audible to the human ear,
but only just. To improve the control performance, more of the SISO feedback
loops must be applied (see Section 6.4). A further important feature is that
the best possible damping associated with a certain mode strongly depends
on the location of the actuator/sensor pair. These and other aspects will be
considered in more detail in the Chapter 7, which deals with the optimisation
of the locations of multiple actuator/sensor pairs with respect to control of
acoustic radiation.
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6.6 Concluding remarks

In this chapter the feedback control of structure-borne sound radiation was
investigated and demonstrated. In feedback control the use of collocated ac-
tuator/sensor pairs decreases the risk of an unstable closed-loop system. In
the present work, the control system consists of a piezoelectric actuator patch
and an accelerometer, which is located at the centre of the patch. This ac-
tuator/sensor pair is attractive from a practical point of view, because it is
integrated within the structure, but it is not truly collocated so that stability
of the closed loop system cannot be guaranteed.

A direct velocity feedback strategy is implemented on the patch/accelero-
meter pair, which attempts to increase the damping of the system, and indi-
rectly, to reduce the sound radiation. This strategy has good robustness prop-
erties and is easily implemented in practice. When several patch /accelerometer
pairs are used, the control system consists of multiple independent feedback
loops. With such a decentralised velocity feedback strategy the radiated sound
power can be reduced over a broad frequency range. The control performance
is not strongly dependent of the feedback gain, so the control system does not
have to be adaptive.

Based on the results for the experimental setup with one feedback unit
it can be stated that a control system consisting of a piezoelectric patch, ac-
celerometer and DVF controller has potential for reducing structure-borne
sound radiation. The sound power is significantly reduced at the resonance
frequencies that can be controlled by the patch/accelerometer pair. How-
ever, in terms of the total sound power, the control performance is limited.
More patch/accelerometer pairs are required to improve the performance. The
agreement between the predicted and measured control performance, in terms
of sound power, is fairly good.
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Optimisation

7.1 Introduction

In the chapters on feedforward and feedback control, the control system con-
sisted of piezoelectric patches of which the number, shape, size and location
were chosen prior to the analysis. Only the voltages applied to the patches
were taken as design variables, found from quadratic optimisation theory in
the case of the feedforward problem or by selecting the proper gain for feed-
back control. However, the performance of a control system, e.g. the extent
to which the acoustic radiation is reduced, is apart from the control strategy
strongly dependent on properties such as size and location of the actuator
patches.

A number of simple rules for designing piezoelectric actuator patches can
be derived from the analysis of beam and plate systems. For instance, the
response near a resonance frequency cannot be reduced if the patch is placed
on a nodal line of the corresponding mode shape. Or, as shown in the previous
chapter, a patch/accelerometer pair implemented with direct velocity feedback
(DVF) control must be located away from clamped plate edges in order to
prevent instability. Such simple design rules are certainly valuable, but they
do not quantify the performance of the control system, especially if the goal is
to reduce acoustic radiation. Therefore, in this chapter a numerical approach
for actuator and sensor optimisation is considered.

In Section 7.2, a general outline of the optimisation strategy is presented
and compared to recent and past work in the literature. The basic ingredients
for the optimisation strategy are the structural and acoustic models presented
in Chapter 4 and the control methods discussed in Chapters 5 and 6. The op-
timisation problem generally involves non-linear (discontinuous) object func-
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tions with multiple optima. Genetic algorithms are effective in solving such
problems and are therefore utilised in this work (Section 7.3). The optimisa-
tion strategy is applied here to find the optimal locations of patch/accelerom-
eter pairs implemented with decentralised velocity feedback control. It is also
possible to optimise for the number, shape or size of the patches, or for other
control methods, but this is beyond the scope of this work. In Section 7.4
several object functions are introduced and analysed for a problem involving
the placement of one patch/accelerometer pair. Then, the problem is extended
to finding the optimal locations of two such actuator/sensor pairs with inde-
pendent feedback loops (Section 7.5). The chapter ends with an experimental
validation of a setup with two optimally located pairs.

7.2 General approach

In order to obtain a system which most effectively reduces excessive noise or
vibrations, one should simultaneously optimise the design of the structure,
the actuators and sensors, the controller and the electronics. A typical ob-
ject function would be one that incorporates several conflicting criteria: high
control performance, low weight, low power consumption and low cost. This
most general problem is difficult to handle due to the modelling complexity
and the computational effort required to optimise such a system. In this work
the problem is limited to actuator and sensor optimisation for a predetermined
structure and control strategy, and furthermore without considering the elec-
tronics. Before presenting the current optimisation strategy, the focus will be
on how other researchers have dealt with actuator and/or sensor optimisation
for active control of sound and vibration.

7.2.1 Literature survey

Many of the works on active control of sound and vibration deal with the
problem of actuator and sensor optimisation. A small portion of relevant
papers on this topic are listed in Table 7.1. This short list is certainly incom-
plete, though it gives an indication of the various approaches that have been
proposed. Many other works are for instance discussed in the review papers
by Padula and Kincaid [88] and Frecker [89]. An attempt has been made to
categorise the works by the type of object function, design variables, optimi-
sation routine and the control strategy applied. In the following, some further
remarks on these and other categories are given.
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Structure. In almost all of the papers a beam or plate structure is considered.
In a few cases the geometry is more complex, such as the box-type structure
in the work of Damaren [90] and the double panel partition, which represents
a section of an aircraft fuselage, in the work of De Fonseca, Sas and Van
Brussel [91].

Actuators and sensors. In ASAC very often piezoelectric patch actua-
tors are applied [92, 93, 94] but also optimisation of point force actuators
has been considered [91]. Although much more often the focus is on optimi-
sation of actuators, optimisation of sensors such as PVDF patches [92] and
microphones [94] has also been reported.

Modelling. For simple beam and plate structures mostly analytical models
have been used. However, FEM models have been used for more complex
geometries [91] or to incorporate the dynamics of piezoelectric patches [95, 96].
Such a FEM model can be defined in advance, but sometimes it is required to
update the model for each evaluation of the object function.

Control strategy. In the early works actuator and sensor optimisation was
performed assuming single frequency feedforward control. More recently, feed-
back strategies for noise and vibration attenuation over a broad frequency
range have been considered [90, 97, 98]. In a few cases the actuator voltage
itself is optimised rather than assuming a control strategy [95, 96].

Object function. Many different object functions have been suggested in
the literature. In most cases the object function is a measure for the control
performance, such as radiated (total) sound power [92], vibration level [99] or
closed-loop damping ratios [90, 97].

Design variables. In most cases the design variables are the actuator and/or
sensor locations. However, in some works the number of actuators and sen-
sors [91] or the sizes of the actuators or sensors (i.e. in case of piezoelectric
patches) [95] are also included in the set of design variables.

Optimisation routine. In the early works the optimisation problem is solved
with gradient-based algorithms [92, 93]. However, most often the object func-
tion is a non-convex function of the design variables, for which gradient based
algorithms likely converge to a local optimum. Therefore, later works focused
at more global optimisation techniques such as genetic algorithms (GA) [91, 94]
and simulated annealing (SA) [100]. It is noted that in some cases the optimum
is obtained from a graphical representation of the object function (indicated
by “none” in Table 7.1).
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Authors Year Ref. Object func.  Design var. Method  Control Remarks

Clark and Fuller 1992 [92] sound power location, size  gradient  feedforward actuator and sensor, single
frequency

Wang, Burdisso and 1994  [93]  sound power location gradient  feedforward single frequency

Fuller

Baek and Elliott 1995 [100] squared location GA, SA  feedforward ~ ANC application, single

pressure frequency

Kim, Varadan and 1995 [95] sound power location, size, gradient none FEM model, single fre-

Varadan voltage quency

Kang, Park, Hwang 1996 [97] modal location none feedback PZT actuator/sensor pair

and Han damping

Li, Hansen and Qiu 1996 [99]  velocity location, size  none none fixed actuator voltage

Wang 1996 [94] sound power location GA feedforward actuator and sensor, single
frequency

De Fonseca, Sas and 1999  [91] number, loca- GA, gra- feedforward  broadband, comparison of

Van Brussel tion dient strategies

De Boe, Simon and 2000 [101] Grammians  location none -

Golinval

De Man, Franois and 2002  [98]  open-loop location GA feedback volume velocity sensor

Preumont

Damaren 2003 [90] location none feedback PZT actuator/sensor pair,

damping ra-
tio

box-type structure

Table 7.1: A selection of the literature on optimisation in active control of sound and vibration.
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7.2.2 Modelling

The previous outline illustrates that actuator and sensor optimisation can be
approached in many ways. Several of the concepts used by other researchers
are combined in the present work. The goal is to provide a general method for
actuator and sensor optimisation for active control of free field sound radiation
of plate-like structures. Emphasis is on a control system with piezoelectric
patches as control actuators. However, no restrictions are imposed on the
type of error sensors.

Structural FEM model
* create piezoelectric FEM model
* eigenfrequency analysis
* static analyses (residual flexibility)

|
T t ____________ ANSYS,
Reduced model Acoustic model
« state space representation [ * radiation modes
¢ add sound radiation model e radiation filter

!

Controller design

« feedforward/feedback strategy
* evaluate object function

—v—

i Object function value MATLAB_:

| |
| |
I I
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I I
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Figure 7.1: An evaluation of the object function.

Irrespective of the type of optimisation routine, an object function must be
available that, when provided by a set of design values, returns a value related
to the control performance. The steps required for evaluating the object func-
tion are shown in Figure 7.1. At this stage, no assumption is made regarding
the exact form of the object function.

The first step is to create a FEM model of the structure with piezoelectric
patches. The basis for the reduced model of the system are the results of
an eigenfrequency analysis and the results of static response analyses (i.e. to
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include the residual mode). These analyses are performed within the FEM
program. As a next step, the equations of motion are formulated in terms of
generalised coordinates and transformed into a state space description. The
residual mode is accounted for in the reduced model for faster convergence of
the modal expansion. More details on the model reduction technique can be
found in Section 4.2.

In order to evaluate an object function related to sound radiation, the
structural model is augmented with the acoustic model. It is assumed that
during the optimisation the geometry of the structure remains unchanged
(e.g. plate dimensions). Therefore, the sound radiation model can be defined
in advance and does not have to be redefined each time the object function
is evaluated. The only necessity is to interpolate the structural response to
the mesh used for discretisation of the acoustic model. The sound power
calculation can be based on a description in terms of radiation modes or, in
the case of state space control design methods, using radiation filters. More
details on the acoustic model are given in Section 4.3.

The final step is to evaluate the system response with control. The type
of control strategy must be predetermined, but it can be either feedforward
or feedback. The parameters of the control system (e.g. feedback gain) can
in principle be handled as design variables, i.e. their optimal setting is found
with the optimisation routine. However, for a given actuator and sensor con-
figuration the optimal control parameter values can often be calculated with
little effort. Because of the rapid increase of required computational effort
with increasing number of design variables, it is more attractive to calculate
the optimal control parameter values in this way. As an example, in case of
feedforward control the optimal secondary source inputs are easily calculated
with the quadratic minimisation procedure of Section 5.2.

The modelling procedure is general in the sense that the structure is mod-
elled with the finite element method. It is therefore possible to model struc-
tures with complex geometries that cannot be modelled analytically. Less
general is the Rayleigh integral method for predicting the sound field, since it
is based on the assumption that the structure is a baffled plate. This model
is sufficient for the analysis of the plate setup considered in this thesis, but
for more complex geometries a more advanced technique like the boundary
element method must be used. The description of sound power in terms of
radiation modes or radiation filters is also valid for this type of advanced
modelling technique.

As shown in Figure 7.1, a new FEM model is created each time the object
function is evaluated. This approach is very time-consuming if the FEM model
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consists of a very large number of elements, e.g. for structures with complex
geometries. It may then be more attractive to use a FEM model in which
the mass and stiffness contributions of the piezoelectric patches are neglected.
The equivalent loading on the structure, formed by bending moments along the
edges if the patch is rectangular, can be derived with an analytical model (see
Appendix C). This simplification will speed up the optimisation process as the
FEM model can be defined in advance and does not have to be updated during
the optimisation. As a final check the optimised setup must be validated with
a model that accounts for the mass and stiffness effects of the piezoelectric
patches. The problem size of the plate structure that will be considered in
Sections 7.4 and 7.5 is however limited. Hence, a FEM model including the
mass and stiffness of the patches is used for those problems.

7.2.3 Optimisation routine

Several optimisation techniques are available for solving an optimisation prob-
lem. Whether or not an optimisation routine is successful in completing its
task strongly depends on the type of object function. Object functions consid-
ered in optimisation of ASAC systems generally have multiple local optima. In
the early works classical gradient-based routines were used to solve the prob-
lem [92, 93]. A gradient-based algorithm converges rapidly to an optimum,
but the starting point (i.e. initial set of design values) is critical to whether the
solution is the global optimum or one of the local optima. There is a consid-
erable chance that the user-defined starting point is far away from the global
optimum, and therefore the algorithm probably converges to a local optimum.
Hence, a number of researchers utilised optimisation methods which are bet-
ter suited for solving problems with multiple optima. The genetic algorithm is
probably the most popular global optimisation technique. In the present work
a genetic algorithm was also applied, since it has been shown recently that
it is effective in solving ASAC related optimisation problems [91, 94, 100]. A
brief description of the genetic algorithm is presented in the next section.

Two software packages were used to implement the optimisation strategy.
The genetic algorithm was programmed in the MATLAB software package.
The FEM model is created and analysed with the FEM program ANSYS,
which can be executed from within MATLAB. Note that a parametric input
file of the FEM model must be available in order to define the model for all
possible combinations of the design values. The FEM results are imported into
MATLAB, where all other steps for completing an object function evaluation
are performed (see Figure 7.1).
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7.3 Genetic algorithms

The basic idea behind genetic algorithms (GAs) is to imitate the principles
of natural evolution in order to solve optimisation problems. A genetic al-
gorithm (GA) maintains a set of potential solutions (i.e. designs) to the
optimisation problem, uses some selection process based on the “fitness” of
potential solutions, and uses some “genetic operators” to create new poten-
tial solutions [102]. GAs are usually described using vocabulary from natural
genetics. A potential solution is called an individual. An individual is repre-
sented by a chromosome made up of a sequence of genes. The set of individuals
maintained by the GA is the population. Each individual in the population
has a fitness, which is found by evaluating some object function.

k=0;

initialise P(k);

evaluate P(k);

while (not termination condition) do
k=k+1;
select P(k) from P(k-1);
alter P(k) by crossover and mutation;
evaluate P(k);

end

Figure 7.2: The structure of a genetic algorithm.

The structure of a (simple) GA is shown in Figure 7.2. At the start of an
iteration k, the algorithm maintains a population P(k). For each individual
in the population, the object function is evaluated to give the measure of its
fitness. Then, a new population is created by selecting more fit individuals.
Some of those are altered by the genetic operators crossover and mutation
to form new individuals. Crossover creates two new individuals by combining
chromosome segments of two individuals (parents). The idea behind crossover
is to produce individuals with improved fitness. Mutation arbitrarily alters
one of the genes of a chromosome to produce a new single individual. The
idea behind mutation is to prevent convergence to a local optimum, i.e. to
explore new regions of the design space. This process is repeated for several
iterations (generations) until the algorithm converges. It is expected that the
fittest individual in the final population represents a near-optimal solution to
the optimisation problem.

The implementation of a GA requires a consideration of the following is-
sues [102]: the chromosome representation of an individual, how to create an
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initial population, the object function to measure fitness, the method for se-
lecting the fittest individuals, the genetic operators, when to terminate the
GA, and the choice of the GA parameters (e.g. size of the population). Espe-
cially the chromosome representation of the design variables being optimised
has a large impact on the performance of the GA. In textbooks on GAs it is
advised to use what is called a “natural” representation of the design vari-
ables [102, 103]. The optimisation problem considered in this work involves
design variables that can take real values. Therefore, in the current imple-
mentation the genes on a chromosome are real numbers (floating point repre-
sentation). The implementation of the GA used in this work is described in
more detail in Appendix F.

A further aspect which is of great importance for the performance of the
GA is the setting of the GA parameters such as population size and number of
crossover or mutation operations. A number of guidelines for choosing these
parameters can be found in the literature, but it is certainly not an easy task
for the (unexperienced) user. Further drawbacks are that GAs have trouble
finding the exact optimum and generally require a large number of function
evaluations. On the other hand, there are several advantages to using GAs
instead of most gradient-based methods: GAs do not require gradient infor-
mation about the object function, GAs can handle discrete design variables
and/or discontinuous object functions, and GAs can move away from local
optima. It is not claimed here that GAs are the best option for solving the
current optimisation problem. But, because of the ability to solve problems
involving object functions with multiple local optima, the GA certainly is a
suitable method.
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7.4 Optimal placement of patch/accelerometer pairs

In the approach outlined in Section 7.2 no assumptions were made regarding
the type of control strategy. In this section and the following the optimisation
problem involves a control system consisting of patch/accelerometer pairs im-
plemented with decentralised direct velocity feedback (see Chapter 6). More
precisely, the optimal placement of these pairs is considered, whereas the ac-
tuator/sensor configuration itself is predetermined (e.g. the shape and size of
the patches). The application of the present approach for optimisation of a
feedforward control system is not considered in this work, but can be found
in reference [104].

7.4.1 Design variables

A patch/accelerometer pair can be designed in many ways, where typical de-
sign variables are the number and locations of the pairs, and the shape, size,
thickness and material properties of the piezoelectric patches. For optimal
design of the control system one should take these all into account in the set
of design variables for optimisation. However, in this work only the optimal
placement of predetermined patch/accelerometer pairs is considered, though a
number of general remarks can be made regarding the other design variables:

e Material properties. To maximise the excitation of the structure (i.e.
effective bending moments) a material with high piezoelectric constant
(ds1) is desirable. Furthermore, stiffer patches can induce higher loads
in the structure, although the effective bending moments cannot have
an arbitrary high value by stiffening a patch. PZT is currently the best
available material for actuator patches.

e Thickness. Kim and Jones [33] studied the optimal thickness of symmet-
rically bonded patches for the excitation of a plate. They concluded that
in the case of an aluminium plate, the optimal patch thickness is about
a quarter of the plate thickness. This conclusion was deduced from a
result showing the effective bending moment as a function of the thick-
ness under the assumption of a constant electric field. If the assumption
had been that of a constant applied voltage, the conclusion would in
theory be: “the thinner, the better”. However, in practice the thickness
is constrained by the maximum allowable electric field, which may not
be exceeded to prevent the material losing its piezoelectric properties.

e Length, width. The length and width (i.e. size) of a patch strongly deter-
mines to what extent a certain structural mode is excited. For example,
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a mode is not well excited if the patch is small compared to the structural
wavelength of that particular mode. Consequently, only a small amount
of damping can be added to that mode with DVF control. The size of a
patch also determines the frequency up to which the patch/accelerometer
pair behaves as a truly collocated actuator/sensor pair and is therefore
important for stability issues [105] (see Section 6.3.2).

e Number. In general, an increase of the control performance can be ex-
pected when the number of patch/accelerometer pairs is increased (see
Section 6.4). However, the amount by which the performance improves
when an extra actuator/sensor pair is used is not straightforward. It is
not worthwhile to increase the number of actuator/sensor pairs if the im-
provement is only marginal, especially because of the rapidly increasing
cost involved. In order to optimise the number of actuator/sensor pairs,
the object function must quantify the trade-off between control perfor-
mance and costs [91]. However, in the current study a fixed number of
patch/accelerometer pairs is assumed.

The behaviour of a control system is determined in different ways by material
properties, thickness and size of a piezoelectric patch. The material properties
and thickness mainly determine the effort required to obtain a certain control
performance (e.g. amount of damping), but the best possible control perfor-
mance hardly depends on these properties. In the case of DVF control this
can be observed in the root locus plot (complex s-plane) as follows: a change
of the material properties or thickness hardly affects the pole/zero locations
or the shape of the root locus. However, a smaller gain is required to move
the closed-loop poles as far as possible into the left-half plane if the material
properties and thickness are close to optimal. On the other hand, a change in
the size of a patch (length, width) can be observed in the complex plane as
a change of the locations of the zeros. Consequently, the layout of the root
locus and thus the damping enhancement change with the size of the patch.
A similar effect is observed in the complex plane when changing the location
of a patch/accelerometer pair. The damping enhancement as a result of DVF
control strongly depends on the locations of the pairs. Proper placement of
actuator/sensor pairs is thus of great importance for the effectiveness of this
type of control strategy.

7.4.2 Object functions

So far the choice of the object function was left out of consideration. A number
of object functions are introduced in this section. Because the DVF control
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strategy aims at damping enhancement, it is straightforward to relate the
object function to damping. The first object function is defined as the sum of
a set of weighted damping ratios:

n

Pr=> o, (7.1)

i=1

where Cfl are the closed-loop damping ratios, «; are weight factors and n is
the number of modes in the summation. With the weight factors some of the
modes in the summation can be given greater priority than others. Note that
the goal is to find the actuator/sensor locations for which this object function
is maximal.

There is a chance that the optimal solution of object function Fj corre-
sponds to a case where some of the damping ratios of modes included in the
summation are large, whereas others nearly increase with respect to the open-
loop ratios. This is circumvented with the second object function, which is
defined as the minimum in a set of weighted damping ratios:

Fy = min(/y), i=1,...,n. (7.2)

If all weight factors are equal to one, the objective is to find the solution for
which the smallest damping ratio in the set is maximal. Note that in this
case the damping ratio is divided by the weight factor, so that in both object
functions a smaller weight factor reduces the importance of the associated
mode.

If the weight factors in the foregoing object functions are set to unity,
one could say that the system is optimised with respect to the structural
vibration. However, the weight factors can be chosen in such a way that
these object functions are more or less related to the acoustic radiation of the
structure. The radiated sound power is determined by the self and mutual
radiation resistances of the structural modes (see Section 4.3.2). The mutual
radiation efficiencies may not be neglected in the prediction of the sound power
if the structural response has contributions from several modes. However,
near a resonance frequency the open-loop response is dominated by only one
structural mode, and the sound power is well approximated when accounting
only for the self radiation efficiency of that mode. One way to incorporate
acoustic radiation into object functions F7 and Fb is by setting the weight
factors equal to the self radiation efficiencies.

The foregoing object functions can be evaluated with an open-loop model of
the system. Those functions do not rely on any knowledge about the primary



Optimisation 163

disturbance excitation of the structure. This is not the case for the third
object function, which is defined as the closed-loop total sound power (in dB):

Weo _ <
F3 =10 logy <I/Vt t) ) Wiot = / W(w)dw, (7.3)

ref 0

where Wyef = 110712 W and [wo,w1] is the frequency band over which the
sound power is integrated. Since the sound power is only evaluated at discrete
frequencies, this integral is evaluated numerically with the trapezoidal rule. In
contrast to the previous object function, the goal is now to find the minimum.

Example results

The object functions are compared by means of the setup shown in Figure 7.3,
which consists of a clamped rectangular plate with one patch/accelerometer
pair with DVF controller. This problem involves two design variables, i.e.
the offsets between the edges of the plate and the patch x,. and y,., and
can thus be represented graphically. The location of the patch/accelerometer
pair was varied within the rectangular domain indicated in the figure by the
dashed lines. Placement outside this domain can be regarded as an infeasible
solution, because the closed-loop system is unstable (low frequency instability,
see Section 6.3.2). A point force disturbance excitation was used for object
function Fj and the frequency range is from 90 to 250 Hz. This range includes
the first three structural modes of the system (1-1, 2-1 and 3-1), so object
functions F; and F5 were evaluated with n = 3. The calculation of the optimal
feedback gain was performed within an evaluation of the object function. The
feedback gain was set to the value that minimises or maximises the object
function for a given location of the patch/accelerometer pair.

In Figure 7.4 the object functions are shown as functions of the centre
location of the actuator patch. The x- and y-coordinates have been normalised
with the plate lengths. Object functions F and Fy are shown in Figures 7.4(a)
and 7.4(b) for the case of unit weighting (a = [a1, a9, a3] =[1,1,1]). The
result in Figure 7.4(c) also corresponds to object function Fj, but there the
weight factors are the self radiation efficiencies of a clamped rectangular plate.!
The frequency dependence of the efficiencies is dealt with by setting a weight «;
equal to the self radiation efficiency of structural mode ¢ at the eigenfrequency
of that mode. After scaling to the largest self radiation efficiency in the set,

"Tn fact, the self radiation efficiencies depend on the location of the actuator/sensor pair.
However, since the variation of the efficiencies is only small, a good approximation is made
with the results of a plate without patch.
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Figure 7.3: Example problem: search optimal location of one DVF loop.

the set of weight factors becomes ae = [1,0.06, 0.43]. The “unit weighted” and
“efficiency weighted” functions are denoted as Fy, and Fyy, respectively. The
result in Figure 7.4(d) corresponds to object function F3.

For an interpretation of the results, one should realise that a structural
mode cannot be controlled (or observed) if the centre of the patch/accelerom-
eter pair is on a nodal line of that mode. The object functions are compared
only with respect to their shapes; it does not make sense to compare their
values. The shapes of object functions F; and Fy,, which both are a measure
for damping, are clearly different. If the location of the actuator/sensor pair
is such that one of the three modes cannot be controlled, then Fy, is mini-
mal. The locations of the minima in Figure 7.4(b) correspond to the nodal
lines of the 2-1 mode (one nodal line) and 3-1 mode (two nodal lines). The
maxima in the figure correspond to locations for which all three modes can
be controlled. On the other hand, a local maximum can be observed for Fj
if the actuator/sensor pair is at the plate centre (see Figure 7.4(a)). For this
location, a significant amount of damping can be introduced for the 1-1 and
3-1 modes. The 2-1 mode is not controlled, but this effect is not observed in
the shape of this object function.

The shape of object function Fy clearly changes if the unit weight factors
are replaced by the self-radiation efficiencies. The 1-1 mode is the most efficient
radiator of the three, which explains why in Figure 7.4(c) the maximum of Fb,
is close to the location where the 1-1 mode is best controlled, i.e. the centre
of the plate. However, the optimal location is some distance from the plate
centre, such that some damping is introduced for the 2-1 mode.

For object function Fj3 the goal is to find the global minimum. This is in
contrast to the other functions, which involve maximisation problems. A fur-
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Figure 7.4: Graphical representation of the object functions, first three modes
(n = 3) in subfigures (a),(b) and (c), frequency range including first three modes
(90 to 250 Hz) in subfigure (d). Objectives F5, and Fuy, refer to two choices of the
weight factors, Zp. and y,. are normalised offsets between plate and patch edges.

ther difference is the non-symmetric shape of F3 because of the non-symmetric
primary point force excitation. The best possible reduction of the total sound
power (90 to 250 Hz) is obtained when the location of the actuator/sensor pair

is near that of the primary disturbance.

For each of the object functions the optimal location of the actuator /sensor
pair was determined from the results shown in Figure 7.4. In Table 7.2 the
closed-loop damping ratios corresponding to these optima are listed. Further-
more, the closed-loop total sound powers in the range 90 to 250 Hz due to
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a primary point force excitation are included. The point force is located in
(z,y)=(90,90) mm and has an amplitude of 1 Newton. Two optimal locations
are found with each of the object functions Fi, Fb, and Fy, because of symme-
try. Although the closed-loop damping ratios are equal for two such locations,
the total sound powers are not equal as a result of the non-symmetric primary
excitation. In the table the total sound power level is given for both optimal
locations, where the left column includes the results when the location of the
actuator/sensor pair is closer to the primary source.

Obj. P sl G A Wiot [dB]
R 337 1081  10.44 112.0 1145
Fo, 476 1219 4.76 113.7 1149
Fy, 11.94 072 9.76 114.6 1145
Fy 239 684  9.24 111.4

Table 7.2: Closed-loop damping ratios of the first three modes (¢ and the
total sound power (Wiot) in the range from 90 to 250 Hz for the optimal location
of a patch/accelerometer pair found with each object function.

If no control system is applied, the total sound power radiated by the plate
is about 124 dB (in the range from 90 to 250 Hz). The minimum of object
function F3 is about 111 dB and represents the best possible reduction of the
total sound power that can be obtained with one patch/accelerometer pair
and DVF controller, for this primary excitation. When the placement is based
on one of the other object functions, the total sound power is not reduced so
much, but still a good control performance is obtained. It may be a surprise
that placement based on object function Fyy, in which the damping ratios are
weighted with radiation efficiencies, does not result in a higher reduction of the
total sound power when compared to placement according to object function
F5,. It can be observed in Table 7.2 that the closed-loop damping of the second
mode remains small for object function Fy,. As a result, the acoustic radiation
is hardly reduced near the second resonance frequency, which explains the
relatively high value of the total sound power.

It is not easy to decide what object function must be used in the optimi-
sation process. Still, a number of remarks can be made regarding the choice
of an object function. The definition of object function Fj is in closest agree-
ment with what the control system must do: reduce the sound power radiated
by the structure. However, a drawback is that the primary excitation must
be known. The optimal location found with this object function depends on
the properties of the disturbance source (e.g. location), and will probably be
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sub-optimal if those properties change. In many cases the disturbance source
is not precisely known. It is then more appropriate to use an object function
like Fy or Fs, which does not rely on any knowledge about the disturbance
source.

7.5 Test case

7.5.1 Problem description

The structure is the same clamped rectangular plate as that considered in the
previous section (see Figure 7.5). Three rectangular PZT patches are bonded
to the plate. One of these is used as the disturbance source. An accelerometer
is located at the centre of each of the other two patches and the DVF strategy
is implemented on these actuator/sensor pairs. Both feedback loops have
equal feedback gain and operate independently (i.e. decentralised DVF, see
Section 6.4).

Decentralised DVF loops

| — Feasible domain
|
|

Primary source (fixed location)

Figure 7.5: Test case: find optimal locations of two patch/accelerometer pairs
with decentralised DVF loops, the primary excitation is by a third patch.

The optimisation problem is defined as finding the locations of the two patch/
accelerometer pairs corresponding to minimum sound radiation. For this test
problem the object function is the closed-loop total sound power (in dB), which
was denoted as Fj in the previous section. It is stressed that with this type of
object function the optimal locations of the patch/accelerometer pairs depend
on the location of the primary patch. A further remark is that the object
function depends on the location of the actuator/sensor pairs even when the
control system is turned off, since a change of location is associated with a
change of the mass and stiffness distribution in the system. It was found,
however, that this effect is small compared to the way in which the total
sound power is reduced by the control system.
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The total sound power is minimised in the frequency range from 70 Hz to
520 Hz, which includes the first nine modes of the system. All these modes are
excited by the primary patch, whose location is equal to that of the primary
patch in the experimental arrangement considered in the previous chapters.
The dimensions of the primary patch are 50 x 30 x 1.0 mm, whereas those of
the secondary patches are 50 x 30 x 0.5 mm.

The placement of the two patch/accelerometer pairs is restricted by de-
manding that the edges of a patch remain parallel to the plate edges. The
location of one pair is thus defined by an z- and y-coordinate, which makes a
total of four design variables. The feedback gain is determined as explained in
the previous section and is thus not handled as a design variable. Obviously,
the design variables are bounded since the patch/accelerometer pairs must be
on the plate. With the additional constraint that the patches must be 20 mm
away from the clamped plate edges, the problem of an unstable system at
low frequency is circumvented. In addition, there is the constraint that the
patches may not overlap. Some details on constraint handling by the genetic
algorithm can be found in Appendix F.

7.5.2 Optimisation results

Five optimisation runs were performed with the genetic algorithm, each time
for 50 generations with a population consisting of 30 individuals. The number
of crossover and mutation operators per generation was 10 and 3, respectively
(see Appendix F for more details). In four out of five runs approximately
the same result was found for the placement of the patch/accelerometer pairs.
This arrangement will be referred to as the optimal configuration. In one case
the genetic algorithm converged to a local minimum. The optimal placement
of the two patch/accelerometer pairs is shown in Figure 7.6. An arrange-
ment with arbitrary placed patch/accelerometer pairs, which will be referred
to as the alternative configuration, is also shown. This configuration corre-
sponds to the setup considered in Section 6.5, but extended with a second
patch/accelerometer pair.

The predicted sound power levels for the optimal and alternative config-
urations are shown in Figure 7.7. Also shown is the sound power radiated
by the plate with only the primary patch on it. These results are the sound
power levels when a unit voltage is applied to the primary patch. Note that
results are shown for a frequency range up to 1000 Hz whereas the setup was
optimised for the range from 70 Hz to 520 Hz. Furthermore, the setting of the
feedback gain is such that the best possible reduction in total sound power is
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Figure 7.6: Optimal and alternative configuration.
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Figure 7.7: Predicted sound power levels without control and with control for
optimal and alternative configurations (Optimal: g = 3.7-10% V-s/m, Alternative:
g=24-10% V-s/m).

obtained in the range from 70 Hz to 520 Hz.?

It can be observed in Figure 7.7 that below 520 Hz a better control per-
formance is achieved with the optimal configuration. The sound power is sig-
nificantly reduced at all resonance frequencies corresponding to the efficiently

2The feedback gain corresponding to the best possible reduction of total sound power is
weakly dependent on the frequency range considered.
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radiating structural modes. However, in the case of the alternative configu-
ration the control system is not able to reduce the sound radiation at some
resonances. One must be aware that the placement of the patch/accelerometer
pairs is optimised with respect to the total sound power (i.e. the area under
the sound power curve), so for some frequencies higher reductions are obtained
with the alternative configuration.

7.5.3 Experiments

An experimental validation was carried out for the plate with the optimal
configuration of the two patch/accelerometer pairs. More details on the real-
isation of such a setup can be found in Section 4.4. The two SISO feedback
loops were implemented as analogue controllers. The analogue implementa-
tion was considered more attractive than the digital one since it allows higher
feedback gains (see Section 6.5). Two identical accelerometers (B&K 4374)
were connected to two identical charge amplifiers with a built-in integrator
(B&K 2635). The outputs from the charge amplifiers were fed directly to
the three-channel voltage amplifier (Piezomechanik SVR 1000/3). Two of the
channels were used to drive the secondary patches and the other was used to
drive the primary patch. The feedback gain in both loops can be varied by
manual adjustment of the gain of each channel.

(0] : — Model
4 A Experiment

AN
~10} AAA AN pAA
2000 4000 6000 8000 100@
Feedback gain [V-s/m]

Norm. total sound power [dB|

Figure 7.8: Predicted and measured total sound power radiated by the plate as
a function of the feedback gain.

The feedback gain was increased stepwise up to the point of instability and
for each step the sound power was measured with the point sound intensity
method (see Section 4.4.4). The gain in the two feedback loops could not be
set to exactly the same value (i.e. because of manual adjustment), but the
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difference was always below 10 %. In Figure 7.8 the predicted and measured
total sound power levels are plotted against the feedback gain. The results are
normalised with the total sound power without control, so a negative value in-
dicates a reduction in total sound power. It can be observed that the predicted
and measured reductions are of the same order. The best possible reduction is
obtained for a somewhat higher value in the case of the experimental results.
Most probably the discrepancies between the numerical and experimental re-
sults are because of the Rayleigh model used in the prediction of the sound
power. The measured reduction of the total sound power is about 10.1 dB,
which is clearly better than the 4.6 dB reduction found with the setup with
one feedback loop in the previous chapter (see Section 6.5.2).
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(a) Model. (b) Experiment.

Figure 7.9: Predicted and measured sound power levels of the setup with two
optimally positioned actuator/sensor pairs (Model: g = 3.7-10% V-s/m, Experi-
ment: g = 6.4-10% V-s/m).

A comparison of the predicted and measured sound power levels without and
with control is presented in Figure 7.9. The results with control are for the
feedback gain that gives the best possible reduction of the total sound power
(i.e. where the results in Figure 7.8 are minimal). It can be observed in both
the numerical and experimental results that the decentralised DVF control sys-
tem with optimally positioned actuator/sensor pairs is effective in controlling
the sound radiation in the frequency range up to 500 Hz.
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7.6 Concluding remarks

A strategy for actuator and sensor optimisation for active control of free field
sound radiation of plate-like structures was presented and validated. The basic
ingredients for the optimisation strategy are the structural and acoustic mod-
els presented in Chapter 4. With these models it is possible to define different
types of object functions for a predetermined control strategy. The optimisa-
tion routine is a genetic algorithm, which is used for the present optimisation
problem since it is suited for solving problems with multiple optima.

For the purpose of validation, the optimal placement of patch/accelerometer
pairs with direct velocity feedback control was considered. The test case in-
volved the placement of two actuator/sensor pairs on a clamped plate. It was
found that a setup with optimally located actuator/sensor pairs gives better
control performance than a setup with arbitrarily located pairs. With the
optimal setup it is possible to reduce the sound power radiated by the plate
at all resonances corresponding to efficiently radiating structural modes in the
frequency range up to 500 Hz, which includes the first nine modes of the sys-
tem. Furthermore, a similar performance was observed in the experimental
results.



Chapter 8

Conclusions and
Recommendations

8.1 Conclusions

This thesis described the development, validation and application of efficient
analysis tools for active structural acoustic control. The topics covered a wide
range of aspects in engineering, varying from the finite element modelling of
piezoelectric materials to the practical implementation of an adaptive feedfor-
ward controller. These topics were usually dealt with separately in earlier work
presented in the literature. In this thesis, a wide range of analysis tools are
combined, resulting in an analysis environment for active structural acoustic
control. It was demonstrated within this environment, active control systems
can be designed that reduce the sound radiation of plate-like structures. With
respect to this result, the following conclusions can be drawn:

e Efficient analysis tools were developed to predict the structural vibra-
tion and the free field sound radiation of plate-like structures with in-
tegrated piezoelectric patches. The linear piezoelectric finite element
formulation allows an accurate modelling of the dynamical behaviour of
structures with integrated piezoelectric patches, and, furthermore, en-
ables the modelling of structures with complex geometries. The sound
radiation was modelled with the Rayleigh integral method. Because of
the modular architecture of the analysis tools it is possible to incorpo-
rate another method for the modelling of the sound radiation (e.g. the
boundary element method). A numerical model that can be evaluated
with low computational effort was obtained with model reduction tech-
niques.
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8.2

The mass and stiffness of small surface bonded patches can significantly
change the structural mode shapes, whereas the eigenfrequencies are
hardly affected. Therefore, the mass and stiffness effects must be in-
cluded in the model for an accurate prediction of the dynamical be-
haviour.

The numerical model was successfully validated with experiments. The
eigenfrequencies, mode shapes and frequency response functions pre-
dicted with the model are in good agreement with experimental results.
The agreement between predicted and measured sound powers is good
in a qualitative sense.

The analysis tool was successfully applied to investigate the behaviour
of two control strategies: narrowband feedforward control and velocity
feedback control. These strategies can result in significant reductions of
the sound power radiated by a plate. Experimental validation showed
that a good estimate of the control performance, in terms of sound power,
is obtained with the numerical model.

The use of multiple independent feedback control systems, which each
consist of a piezoelectric actuator patch, an accelerometer and a direct
velocity feedback loop, has potential for reducing the sound radiation of
lightly damped plate-like structures. This approach is attractive because
of its good robustness properties and ease of implementation.

An optimisation strategy, based on the numerical model and a genetic
algorithm, was presented and validated. For a test problem involving the
optimal placement of two patch/accelerometer pairs, a good agreement
between numerical and experimental results was found.

Recommendations

The Rayleigh integral model is based on the assumption that the vi-
brating structure is a baffled plate. This model proved to be sufficient
for predicting the trends in the sound radiation behaviour of the exper-
imental setup, but in case of structures with more complex geometries
a more advanced modelling technique must be used. The boundary ele-
ment method is an attractive numerical technique to model the free field
sound radiation of such structures.

In the present work two control strategies were considered, for the most
part to show that the numerical model is a useful design tool. Based
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on the results presented in the thesis, it can be stated that these two
strategies have potential for reducing the sound radiation. However,
there are many other control strategies which are possibly better suited
for the current control problem. Therefore, it may be worthwhile to
consider other control strategies.

e In Chapter 1 it was claimed that active control methods are better suited
for low frequency noise reduction than passive methods because of the
smaller weight and volume of such a system. However, the electronic
hardware (i.e. controller and amplifiers) used in the experiments has a
mass and volume much more than the plate itself. To make the ASAC
concept interesting for commercial applications a miniaturisation of the
hardware is required.



176




List of Symbols

Roman

Participation factor of radiation mode 7
Beam width

Patch width

Speed of sound in acoustic medium

Wave propagation speed in an elastic bar
Wave propagation speed in a piezoelectric bar
Components of the electric flux density vector
Components of the piezoelectric charge coefficient tensor
Components of the electric field vector
Young’s modulus of plate material

Green’s function

Time-averaged sound intensity

Time-averaged sound intensity in direction r
Quadratic error criterion

Imaginary unit

Sound power level

Beam length

Plate length in x-direction

Plate length in y-direction

Patch length in z-direction

Patch length in y-direction

Acoustic wave number (= w/cq)
Electromechanical coupling factors

Number of modes used in modal expansion
Number of elemental radiators
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Acoustic pressure
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Surface charge [C
Participation factor of a structural mode ¢ [—
Location vector m

[
Location vector of a point on surface S [m
[

Viscous damping ratio of structural mode ¢ [
Electric potential (voltage) v

}

]

]

]
Spacer length of sound intensity probe m]
Surface area [m?]
Surface area of an elemental radiator [m?]
Components of the compliance tensor [N/m?]
Beam thickness [m]
Plate thickness [m]
Patch thickness [m]
Voltage across electrodes [V]
Acoustic particle velocity [m/s]
Surface normal velocity [m/s]
Time-averaged (radiated) sound power (W]
Structural displacement field [m]
Placement of patch in z-direction [m]
Placement of patch in y-direction [m]
Cartesian coordinates [m]
Free space angle in Helmholtz integral equation -]
Coefficients for proportional damping -]
Components of the strain tensor -]
Dielectric permittivity in vacuum (= 8.85 - 10712) [F/m]
Components of the dielectric permittivity tensor [F/m]
Eigenvalue of radiation mode i -]
Angular frequency [rad/s]
Angular eigenfrequency of structural mode ¢ [rad/s]
Poisson’s ratio of plate material -]
Density of acoustic medium [kg/m3
Density of plate material [kg/m3]
Density of piezoelectric material [kg/m3
Radiation efficiency -]
Components of the stress tensor [N/m?]
Phase angle between intensity probe microphone signals [rad]

]

]
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Matrices

State space model: system matrix

State space model: input matrix

State space model: output matrix

Elasticity matrix at constant electric flux density
Elasticity matrix at constant electric field

Viscous damping matrix

State space model: feedthrough matrix
Piezoelectric (charge) coupling matrix

Piezoelectric (stress) coupling matrix

Matrix with static charge responses

Piezoelectric (voltage) coupling matrix

FRFs between disturbance inputs and error sensors
FRFs between control inputs and error sensors
Piezoelectric (stiffness) coupling matrix

wu Structural stiffness matrix

Equivalent stiffness matrix (after static condensation)
Piezoelectric stiffness matrix (= Kgu)
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Dielectric stiffness matrix

Structural mass matrix

Matrix with radiation resistances of structural modes
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Matrix with static structural responses

Error weighting matrix and effort weighting matrix
Acoustic impedance matrix

Dielectric matrix at constant strain

Dielectric matrix at constant stress
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Dielectric matrix at constant strain

Dielectric matrix at constant stress

Matrix with radiation modes

Matrix with eigenvalues of radiation modes

Matrix with structural eigenvectors

Matrix with structural eigenvectors, normal component only
Matrix with voltage eigenvectors

Matrix with static voltage responses
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Viscous damping matrix (= diag({;))
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Vectors

a Vector with radiation mode participation factors

D Electric flux density vector

E Electric field vector

f Vector with nodal structural forces

f* Equivalent structural force vector

g Vector with nodal charges

g’ Part of g with prescribed voltage boundary condition
g° Part of g with prescribed charge boundary condition
o) Vector with pressures in field points

q Vector with structural mode participation factors

u Vector with nodal structural displacements/rotations
up Static structural response

; Structural eigenvector of mode i

v State space model: input vector

V4 Vector with primary disturbance inputs

Ve Vector with secondary control inputs

Vi, Vector with normal velocities of elemental radiators
X State space model: state vector

y State space model: output vector

Yd Vector with responses to primary disturbance inputs
Ye Vector with responses to secondary control inputs

€ Strain vector

10} Vector with nodal voltages

X Part of ¢ with prescribed voltage boundary condition
o° Part of ¢ with prescribed charge boundary condition
Yi Acoustic radiation mode ¢

o Stress vector

Abbreviations

ASAC Active structural acoustic control

DOF Degree(s) of freedom

FEM Finite element method

FRF(s) Frequency response function(s)

GA(s) Genetic algorithm(s)

MAC Modal assurance criterion

MIMO Multiple input, multiple output

PZT Piezoceramic material (lead zirconate titanate)
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RME Radiation modal expansion
SISO Single input, single output

Miscellaneous

A& Differential operator
Re( ) Real part
Im( ) Imaginary part

T Complex conjugate of x

X Time derivative of x

xT Transpose of x

xH Hermitian of x (complex conjugate transposed)
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Appendix A

Additional Information on
Piezoelectricity

A.1 Alternative constitutive equations

The piezoelectric constitutive equations can be written in four ways. These
forms are given below, in matrix-vector notation.

Notation 1:
€ sZ 4" (e
op-la =8 (A
Notation 2:
o CcPl —eT] (e
o E e (+3
Notation 3:
€ SP g (o
tef =% &/{3) (83
Notation /:

G=1% 2 s (Ad)

In the above equations, € is the strain vector, o is the stress vector, D is the
electric flux density vector, and E is the electric field vector. Matrices S and C
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contain the elasticity constants, € and 3 are the dielectric constants matrices.
The piezoelectric coupling is expressed by matrices d, e, g and h. The super-
script symbols indicate values at E, €, ¢ and D constant. For example, CF
is the elasticity matrix for a constant electrical field. The coefficient matrices
appearing in the four sets of constitutive equations are related as follows:

cPsP=1, cP=cP+e'h, e=dCF
cPsP =1, SD:SE—QTg, d=¢"g,
ep =1, e =c+de’, g=p"d,
§UéU:I7 Ba:Be_ghT7 hzch

A.2 PIC-151 material properties

The PZT patches used in the experiments are fabricated by PI Ceramic. The
material type is PIC-151. The elastic compliance matrix under constant elec-
tric field, the piezoelectric charge coefficient matrix, and the dielectric matrix
under constant stress are given by (supplied by PI Ceramic):

(168 —566 —711 0 0 0
—566 168 —-711 0 0 0
BE_q qo-12|-711 =711 190 0 0 0 5
sF=1.10 0 0 o si0 o0 o | mY/N. (A5
0 0 0 0 51.0 0
0 0 0 0 0 45.0]
0 0 0 0 610 0
d=1-1071] o0 0 0 610 0 0| m/V, (A.6)
—214 -214 423 0 0 0
.72 0 0
e=1-10%1 0 172 0 | F/m. (A7)
0 0 187

The storage order of the strains (and stresses) is according to the IEEE stan-
dard on piezoelectricity, i.e. € = {e11, €22, €33, 2€23, 2€31, 2€12} 1.
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A.3 Thermopiezoelectricity

If the standard piezoelectric formulation is further expanded to a thermopiezo-
electric formulation, two major effects are included, namely:

e The pyroelectric effect; the generation of electrical charge as a result of
temperature variation, and vice versa.

e The thermal strain effect; the generation of mechanical strain as a result
of temperature variation.

Thermopiezoelectric effects must be accounted for when piezoelectric materi-
als are applied in environments with strong temperature variations, e.g. in
aerospace applications. The constitutive equations for a linear thermopiezo-
electric material are given by (in index notation) [106]:

€ij = S0 ok + dis; B+ M50, (A.8a)
D; = dyyon + €5 By + 70, (A.8D)
A:)\gakl—l—pZEk—i-Oz@. (A.8¢c)

In these equations, 6 is the temperature variation (from the stress-free refer-
ence temperature ), A is the entropy per unit volume, )\5 are the tempera-
ture strain coefficients, py are the pyroelectric coefficients, and « is a material
coefficient. The superscript symbols indicate values at E, o0 and 6 constant.
The additional equation besides mechanical and electrical equilibrium equa-
tions (see Section 2.4) to describe thermopiezoelectric equilibrium is the heat
conduction equation, which is given by:

hi = —kij 97]' R (Ag)

where h is the heat flux vector, and k is the heat conduction tensor.
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Appendix B

Additional Information on
Beam Models

In this appendix, additional information on the beam model of Section 3.3
is presented. In Section B.1, the dynamic stiffness matrix (DSM) of a beam
element with one surface bonded patch is derived. The validity of the assump-
tion of a uniform electric field, which was used in the derivation of the beam
model, is considered in Section B.2. In Section B.3, the implementation of a
DSM model for the coupled longitudinal and transverse vibrations of a beam
with surface bonded patches is considered.

B.1 Derivation of the dynamic stiffness matrix

A DSM element of a beam with one surface bonded patch is shown in Fig-
ure B.1. The equation of motion that is used as the basis for the dynamic
stiffness matrix is, in frequency domain notation, given by (see Section 3.3.1):
d*w

—(pA)eqw+ (BD)iy =7 = f (B.1)
where w is the transverse displacement (i.e. complex amplitude), and f is an
external transverse load. The nodal DOF vector w and the nodal load vector
f are defined as:

w; fi

0; M;
w = ! , f = LD B.2
Wit1 Jit1 (B-2)

i1 M; 11
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where w; and 0; = dw;/dx are the displacement and rotation at node i, and
fi and M; are the corresponding nodal shear force and bending moment. The
sign convention is shown in Figure B.1. As well as the structural DOF and
loads, this element also has an electric DOF and load, namely the voltage
across the electrodes V', and the charge on the electrodes (). Because these
variables are independent of the coordinate along the beam, these variables
are not defined at a node.

Figure B.1: Sign convention for a DSM element.

The general solution of equation (B.1) can be written as:
w = Cy sin(kyz) 4+ Cy cos(kyz) + C3 @=L 4 Cye™hor 4 Wy (B.3)

where C to Cy are the integration coefficients, L is the element length, and
the flexural wave number k; is defined as:

2(PA)eq (B.4)

The first four right hand side terms in equation (B.3) represent the homoge-
neous part of the solution, and w), is the particular solution. The particular
solution depends on the type of externally applied structural load. The nodal
DOF can be expressed in terms of the integration coefficients and the particu-
lar solution by evaluating the general solution at the nodes, i.e. at x = 0 and
x=L:

w=Gc+w,, (B.5)

where c is the column vector with integration coefficients, w), is the column
vector with the particular solution evaluated at the nodes. The transfer matrix
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G is given by:

0 1 e Rl 1
kp 0 k‘be_kb[’ —ky
sin(kyL) cos(kyL) 1 e ol (B.6)
ky COS(kbL) —ky sin(k‘bL) ky —kbe_kbL

An equation similar to (B.5) exists for nodal the load vector f. The bending
moment M and the shear force F' are given by:
d?w dM
M: (EI)ZqW—Epere(l—'y)ﬁpe, and F:—E
where v = EpcApe/(EA)eq. The relation between the shear force and the bend-

ing moment is the mechanical rotary equilibrium for an infinitesimal part.
Evaluating equations (B.7) at the nodes gives:

(B.7)

f:HC—I—k12V+fp, (B8)

where V' is the electrode voltage, f, is the contribution of the particular solu-
tion,

—ky 0 k‘be_kbL —ky
B @ 12 0 1 —e Rl 1
H = (EI)eq kb k‘b COS(k‘bL) —kb sin(k‘bL) —k‘b kbe_kbL ’ (BQ)
—sin(kyL)  —cos(kyL) 1 e Rl
and
0
d 1
K19 = EpeQpe (1 — 7)== (B.10)
tpe | O

-1

The surface charge on the top electrode is defined as the integral of the
average dielectric displacement (see Section 3.3.1):

L ty/2+tpe
Q= bpe/ / Dsdz | dx, (B.11)
0 ty/2

E,.Q dZw 1—k2
D3 = d31 Epe pe¥pe - 31 .. B.12
Pt q(m)eq |5 - | AN 12

where
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Equation (B.11) can be rewritten in a form in which the charge is related to
the nodal DOF and electrode voltage:

Q=kaw+knV, (B.13)

where ko1 = krlfg, and

bpelpe
koo = — Z; B €33 (1 - k§1(1 - ’Y)) . (B.14)
pe

When equations (B.5), (B.8) and (B.13) are combined, the element matrix is
found that relates the structural and electric DOF and loads:

o )= {e)+ {8 B

K11:HG_1, and g:KHWp—fp .

where

The components of g are defined by the particular solution and thus by the
type of mechanical load on the element. The components of g represent the
equivalent nodal forces and moments. For a number of mechanical loads, the
particular solutions are given in Table B.1.
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B.2 Uniform electric field assumption

In the derivation of the beam model the electric field across the thickness of
the patch was assumed to be uniform. In the analysis presented here, the
electric field is solved with Maxwell’s equation for the Euler-Bernoulli strain
field. A similar approach was used in Section 2.5 for the longitudinal vibration
of a piezoelectric bar.

The dielectric displacement across the patch for the Euler-Bernoulli strain
field is given by:

D3 = d31Epe(eo — £ 2) +€33(1 — k3,)E3, (B.19)

where k31 = dg1y\/Epe /%5 is the electromechanical coupling factor. Substitu-
tion of this equation into Maxwell’s equation for a one-dimensional electric
field gives:

3o k3

— = B.20
82’2 d31(1 — k?%l) o ( )

where the electric field has been replaced by F3 = —0¢/0z, with ¢ the electric
potential. Double integration of this equation with respect to the z gives:
k3 22
p=———><rh—=+Crz+Cs. B.21
dsi(1— k%) 2 (B-21)

where C7 and (5 can be determined with the electrical boundary conditions.
The following conditions apply:

D(t/2) =0,  d(ty/2+tp) =V . (B.22)

For these boundary conditions, the electric potential distribution is:

¢ = V, (B.23)

2 2
k31 <Z2 tb—;tpez—l— tb(tb_g2tp8)> - 2z —tp

Cdu(l-k)\2 2tpe

and the corresponding electric field is:

By = 3y <z _bt tpe) P (B.24)
dz1 (1 — k2 2 tpe

The first right hand side term represents the change of the electric field due to
the deformation of the structure. The electric field is linear across the patch,
whereas the distribution along the patch depends on the curvature k.
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The normal stress in the patch corresponding to the electric field in equa-
tion (B.24) is:

. k32 th + tpe
ol = Epe <60 - [z + 1 _3]22 <z -2 5 L )] K+ epe> ; (B.25)
31

where €, = d31V/tpe. With equations (3.7) the normal force and bending
moment become:

N (EA)eq _EPEQPE €0 E eA e
= k2 + pes b €pe
M _Epere EbIb + Epe(Ipe + —= I ) K _EPEQPE per

1—k2, ~pe
(B.26)
where I*, = (byets.)/12. This result and the result found for the uniform elec-
tric field assumption (see equation (3.8)) are similar, but the bending stiffness
is different for the two cases:

Uniform (E1)eq = Eply + Epelpe

2

Linear (EQ)eq = Eoly + Epe <Ip6 + %I;J .
31
In Figure B.2 the relative difference between the bending stiffness for a uniform
and a linear electric field is shown as a function of the thickness ratio ty./ts.
The electromechanical coupling factor (for the ds; effect) for the material
considered in this thesis is about 0.4 (see Appendix A). The results indicate
that the error introduced by the uniform electric field assumption is very small.
When only a small part of the beam is covered with a piezoelectric layer, the
change in the overall bending stiffness due to the assumption is even smaller
than shown in the figure. Therefore, the conclusion is that the assumption of
a uniform electric field is allowed.

B.3 Model for the coupled longitudinal and trans-
verse vibrations

The frequency domain representation of the equations of motion for the cou-
pled longitudinal and transverse vibrations of a beam with an asymmetric
patch (see Section 3.3.1) is given by:

dw d2uy 3w
—w? (pA)eq g + w? PreQpe . — (BA)eq g + Epelpe g =0, (B.2Ta)
d3ug d*w

—w? (pA)equ — EpeQpe g5 + (ET) =0, (B.27b)

gt
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Figure B.2: Relative difference between the bending stiffness for a uniform and
linear electric field versus the patch to beam thickness ratio (Epe = Ep, bpe = by).

where ug and w are the longitudinal and transverse displacements, respectively,
of the beam mid-plane. By inserting a solution of the form:
_ Az _ Az
ug = Ae™?, w=Be'?", (B.28)

the equations of motion reduce to the eigenvalue problem:

NP T o

€d = . B.29
| BpeQpeX’ TNV =ty o
(ET)eq

The off-diagonal terms represent the coupling between the longitudinal and
transverse vibrations. The non-trivial solutions of this equation can be solved
from the characteristic equation:

(k1 — DA 4 (ko — KM + kN2 + B2k =0, (B.30)
where
A) (pA)
L2 — 2 (PA)eq A — 2 eq
P (B A P (Bl
b= Qe by — w2 L7 Ere Qe
(BA)eq(ET)eq’ (EA)eq(ET)eq

Note that k; and kj are the longitudinal and flexural wave numbers for the
uncoupled problem. The characteristic equation has six roots, i.e. three con-
jugate pairs. For each root \; of the characteristic equation, the integration
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coeflicient A; is related to coefficient B; by the scalar «;. The general solutions
for the longitudinal and transverse vibrations can be written as:

6 6
uozz a; B; eM7® w:Z B;ehi® (B.31)
=1 =1
where
(BI)eq(N — k)
i = v . B.32
“ Epere )‘? ( )

The dynamic stiffness matrix for the coupled vibration model is derived
similarly to the analysis presented in Section B.1. In this case the nodal DOF
vector and nodal load vector are defined as:

U; Ni
w; fi
0. M,

w= Lo ) M U B.33
Uiyl Nit1 ( )
Wi1 fz‘+1
i1 M; 1

where u; and N; are longitudinal displacement and normal force, respectively,
at node i. The sign convention for this element is shown in Figure B.3.

T

A w; Vv, ‘ Wit

#\ Patch 0; "
0, \
(ty)r * o ' >
y / U; Beam / Uiy
/
-

Figure B.3: Sign convention for a DSM element.

(tpe)l

B.3.1 Test case

As a next step, the model for the coupled longitudinal and transverse vibra-
tions is compared with the “uncoupled” model of Section B.1, which only
describes the transverse vibration. The setup consists of an aluminium strip
(490 x 30 x 1.2 mm) with two asymmetric bonded patches (see Figure B.4).
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The patches have equal size (I, x 30 x 1.2 mm) and material properties. One
patch is a voltage driven actuator (prescribed voltage) and the second patch
is a voltage sensor (zero charge). The material properties of the strip and the
patches can be found in Table 3.2.

Actuator

Strip
Tpeld

Tped

123

Figure B.4: Strip with two surface bonded patches.

In Figures B.5 and B.6 the results of a frequency domain analysis are presented
for two configurations of the patches. The strip is clamped on one side. In the
first configuration (Figure B.5) the patch lengths are relatively small compared
to the strip length (I, = 50 mm) and in the second configuration (Figure B.6)
the patches cover most of the strip surface (I, = 200 mm). The placement of
the patches is given in Table B.2.

lpe  Tpemn  Tpen boundary condition

Figure B.5 50 130 310  clamped-free
Figure B.6 200 30 260  clamped-free
Figure B.7 50 130 310  clamped-clamped
Figure B.8 200 30 260 clamped-clamped

Table B.2: Patch lengths and locations (in mm).

In Figures B.5 and B.6 the FRF from the actuator voltage V; to the trans-
verse tip displacement u,, and the FRF from the actuator voltage to the sensor
voltage V5 are shown. In each subfigure the FRF's calculated with the coupled
model (black solid line) and the uncoupled model (black dash-dotted line) are
compared. The coupled model refers to the model for the coupled longitudi-
nal and transverse vibrations and uncoupled model refers to the model where
the longitudinal vibration is eliminated by assuming that the normal force
is zero. For completeness, also the FRFs calculated with a two-dimensional
FEM model are included in the results (gray solid line). The FEM model
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describes the coupled longitudinal and transverse vibration. The FEM model
is evaluated in the frequency range up to 1000 Hz, where the model is valid for
the chosen discretization. More details on the numerical model can be found
in Chapter 4.

10’ 10 10° 10 1
Frequency [Hz| Frequency [Hz|

Figure B.5: FRFs calculated with the coupled model (—), uncoupled model (-----),
and FEM model (—) for I, = 50 mm. The strip is clamped on one side.

1 10° 10" 10° 10
Frequency [Hz] Frequency [Hz]

Figure B.6: FRFs calculated with the coupled model (—), uncoupled model (-----),
and FEM model (—) for I, = 200 mm. The strip is clamped on one side.

As shown in Figures B.5 and B.6, there is a good correspondence between
the FRFs predicted by the uncoupled and coupled model in the low frequency
range. These results are furthermore in good agreement with the FEM re-
sults. At higher frequencies (> 1000 Hz), clear discrepancies between the
uncoupled and coupled models are found, which are more pronounced for the
configuration with large patches. It is noted that no damping is included in
the models. Therefore, the differences between the levels of the FRFs close to
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an eigenfrequency are mainly due the different discretizations of the frequency
range.

It is important to note that the correspondence between the uncoupled and
coupled model depends on the type of boundary condition. For the case that
the strip is clamped on both sides, results are shown in Figures B.7 and B.8.
In this case the transverse displacement of the strip at @ = xpeq + e is con-
sidered rather than the the tip displacement. Now also in the low frequency
range discrepancies between the coupled and uncoupled model can be ob-
served, especially if the patches are large compared to the strip length. Still,
the dynamical behaviour is accurately predicted by the uncoupled model if
only a small part of the strip is covered with patches.

Va/ V1| [-]

10 10" 10° 10’ 10" 10 10" 10° 10’ 10
Frequency [Hz] Frequency [Hz]

Figure B.7: FRFs calculated with the coupled model (—), uncoupled model (-----)
and FEM model (—) for I, = 50 mm. The strip is clamped on both sides.

10’ 10 10° 10
Frequency [Hz| Frequency [Hz|

Figure B.8: FRFs calculated with the coupled model (—), uncoupled model (-----)
and FEM model (—) for I, = 200 mm. The strip is clamped on both sides.



Appendix C

A Plate with Surface Bonded
Patches

C.1 Analytical model

In this section an analytical model of a plate with surface bonded piezoelectric
patches is presented. The analysis is similar to the work of Dimitriadis, Fuller
and Rogers [32] who considered the excitation of a simply supported plate
by two patches bonded symmetrically on opposite sides of the plate. They
determined the loads induced by the actuator pair with a static analysis, and
used these results in an approximate dynamical analysis, in which the mass
and stiffness of the pair were neglected. The same approach is applied here for
a plate with asymmetrically bonded patches, which can serve either as actuator
or sensor (see Figure C.1). An approximate dynamical model is derived for the

Figure C.1: A rectangular plate with a surface bonded patch (coordinate z is
measured from the plate mid-plane).
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transverse vibration of a plate with one or more PZT patches. The following
assumptions are used:

e Kirchhoff hypothesis: a plane through the plate and patch perpendicular
to the mid-plane of the plate remains straight and perpendicular to the
mid-plane during deformation. Therefore, the strain is continuous at the
bonding layer, i.e. perfect bonding is assumed.

e The electric field across the thickness of the patch is uniform.
e The plate and piezoelectric materials are homogeneous in the xz-y plane.
e The mass and stiffness loading introduced by a patch is small.

In Chapter 4 the dynamic stiffness matrix method was applied to model beam-
like structures with surface bonded patches. This method can not be used for
plate-like problems, since no exact solution of the governing equation of motion
is available. Therefore, an alternative model is derived, which does not account
for the mass and stiffness of the patches.

The equation of motion for the transverse plate vibration is given by:

2 E 43 2 4 4
0*w ptp <8w *w 8w>:f’ (1)

t
Prte i T 12102 \ B2t T Taa2 a2 | oyt

where w is the plate mid-plane displacement in the transverse direction, p,, is
the density of the plate material, ¢, is the plate thickness, and f is an external
distributed load on the plate. This equation follows from classical plate theory,
i.e. the Kirchhoff hypothesis is used, and shear effects and rotary inertia effects
are neglected.

The mode superposition method is used to solve equation (C.1). It is
assumed that the solution is of the form:

m=1

n=1

where 1, are the mode shapes of the plate, ¢, are the mode participation
factors, and m and n define the number of half waves in the z- and y-directions.
When the modal expansion (C.2) is substituted into equation (C.1), and the
result is multiplied by ¥y, and integrated over the plate area S, a set of m xn
uncoupled ordinary differential equations is obtained:

Amn an + Amn wganmn = Tmn (03)
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where wy,;, are the eigenfrequencies, and

A = / pptp 2, dS (C.4a)
S

’f’ng/ f(z,y) Ymn dS, (C.4b)
S

are the generalised masses and generalised loads, respectively. Equation (C.3)
describes the structural vibration of the plate. The electromechanical interac-
tion due to the piezoelectric effect is determined with a static analysis.

Plate loading

In the analysis that follows the indices p and pe refer to a variables related to
the plate and piezoelectric patch, respectively. The linear strain field in the
plate and the patch associated with the Kirchhoff hypothesis is given by:

Oug 0w

0
€11 = — — 2 ——= = €11 — ZK11 C.5a
z 0x? 1 ’ ( )

oy = D0 Ow

1 2
<6u0 8UO> —z Ow _ ey — 2 K13 (C.5¢)

= 632 — Z K99, (C5b)

w2=51%3, "o D20y

where ug, vg and w are the displacements of plate mid-plane in the x-, y- and
z-directions, respectively, e?l, 682 and 6?2 are the mid-plane membrane strains,
and k11, koo and k19 are the curvatures. The uniform electric field across the
thickness of the patch is described by:

By— -2, (C.6)

tpe
where V' is the voltage across the electrodes and 1, is the patch thickness.
With the linear constitutive equations for plane stress, the stress field in the
patch can be written as:!

pe 0
obsh = P 1y 1 0 €y — < Koy p 2| +—2 1% €
2 1-v2 | 32 1-v pes
(&
019 el 0 0 1-vp €79 K19 pe 10
(C.7)

In the model by Dimitriadis et al. [32] the stresses in the patch are assumed to have the
same slope as in the plate. Consequently, the strains in the plate and patch have different
slopes if the materials have different elastic properties. The present model does not make
the constant stress slope assumption, as in the model presented by Kim and Jones [33].
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where €,c = d31V/t,c is the free piezoelectric strain, E,. is the Young’s mod-
ulus, and v, is Poisson’s ratio (in-plane). The free piezoelectric strain €, is
equal in the z- and y-directions because the material is assumed to be homo-
geneous in the z-y plane (d3; = ds2). The stress field in the plate is described
by a similar set of equations, but without piezoelectric coupling.

Figure C.2: Forces and moments in a Kirchhoff plate.

The stresses acting on a part of the plate with patch are equivalent with a
set of forces n = {Ny1, Nag, N12}T and moments m = {Myq, Moo, Mo}t for
which the positive senses are shown in Figure C.2. Integration of the stresses
with respect to the z-coordinate gives a relation of the form:

(b= e{eh+{e o

where € = {6(1)1, 682, e?Q}T and Kk = {K11, k22, K12} . For the case of static equi-
librium in the absence of external loads, i.e. n = 0 and m = 0, equations (C.8)
can be solved for the unknowns €y and k. The resulting deformation is equal
in the z- and y-directions:

6?1 = 682 = Ce €pe 5 k11 = Koo = Oy, €pe (09)
where
o t2—|- —1752e
Ce = 5 ( p /8 p )_1 5 s (ClOa)
(B+4)t2 4 6tptpe + (871 +4)t2,
6(tp + tpe)
Cw = L , C.10b
(B+4) 12+ 6tptpe + (871 +4) 12, ( )
and
Eot,(1-v,,
pg=_r P p(1-pe) (C.11)

B Epetpe(1-1p) '
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It can be seen in equation (C.7) that the electric field does not couple to the
shear deformation, so )y = 0 and k12 = 0.

The loads induced in the plate are found by integration of the stresses in
equation (C.9) over the plate thickness. For a patch that covers only a part
of the plate the induced loads can be written as [32]:

_ Bty

Npe = - Uy Ce €pe [h(z-71) — h(z-22)] [h(y-y1) — h(y-y2)], (C.12a)
Ept?
Mye = 12(1-1,) Cy epe [M(z-21) = h(z-22)] [0(y-y1) — h(y-w2)], (C.12b)

where h(.) is the unit step function, and

X1 = Tpe, T2 = Tpe + (lpe)x ’

Y1 = Ype » Y2 = Ype + (lpe)y , (013)

define the location and the size of the patch (see Figure C.1). An electric
field across the patch induces a normal force distribution Np. and moment
distribution M, which are equal in the x and y-direction and exist only in
the proximity of the patch. The normal force distribution does not contribute
to the transverse vibration of the plate and is therefore not further discussed.
The forcing term in the equation of motion (C.1) is related to the moment
distribution (C.12b) by [32]:

0?M,.
/= 83:2p +

9% My,
oy? "’

(C.14)

where

asze Eptg C}{ v v
= [0 (x-21) — &' (z-22)] [A(y-y1) — h(y-y2)]. (C.1
92~ 1a(1-py) o0 @rm) = d(@-wa)] by -y1) —hly-g2)],  (C15)
0*Mye _ Byt Cs
ay>  12(1-1p)

epe [(z-21) = h(w-22)] [§'(y-p1) = 9(y-12)], (C.15b)

and 0'(.) is the spatial derivative of the Dirac delta function. The load defined
by equations (C.14) and (C.15) is equivalent with external line moments acting
along the boundaries of the patch [32]. In the same way the excitation for in-
plane vibration can be represented by line forces along the boundaries of the
patch. A similar conclusion was drawn in Chapter 3 for the beam model.
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Surface charge

Once the mode participation factors are known the plate response can be
calculated with equation (C.2), using a limited number of modes in the ex-
pansion. It is furthermore possible to calculate the charges on the electrodes.
The surface charge is obtained by integration of the electric flux density Ds
over the electrode area. For a Kirchhoff strain field and a uniform electric field
the electric flux density can be written as:

0
ds, E ‘1 o 1-2k32
D3 = 1_Vpe {1 1 0} (<eSyp—Qhnpz|— > Heel, (C16)
pe 6(1)2 K19 31

where k31 = d3; \/ Epe/€85(1-1pe) is the electromechanical coupling factor.
The electric flux density is a function of both the mid-plane membrane strains
and the curvatures. When it is assumed that the in-plane inertia forces and
the in-plane external loads are small, the normal membrane strains can be
expressed in terms of the curvatures and the free piezoelectric strain:

ty,+1 1
0 P pe
€; = Kii — €pe 5
vo2(B+1) " Byl e

As for the beam model, the surface charge is evaluated using the averaged
electric flux density. When equation (C.17) is substituted into equation (C.16)
and the result is averaged over the thickness of the patch, the result is:

D i dglEpe tp+tpe ﬁ
3 = —
1-vpe 2 (+1

i=1,2. (C.17)

1-2k? 2
(lill -+ I€22) + <T -+ m) 6p6:| . (0.18)

By integration of this expression with respect to the electrode surface the
surface charge Q is obtained:

y2 T2
Q:/ / Dsdzdy. (C.19)
Y1 x1

C.2 Numerical model: ANSYS implementation

In this work the commercial finite element program ANSYS was used. Un-
fortunately, no plate elements with piezoelectric capabilities are available in
ANSYs [49]. The element types available for the modelling of strip-like and
plate-like structures with piezoelectric patches are shown in Figure C.3. Two
element types with piezoelectric capabilities are available: a two-dimensional
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Beam3 Shell63 Planel3 Solid5
(3 DOF/node) (6 DOF/node) (3 DOF/node) (4 DOF/node)
K J L K o N
/J f
J
L
I I I J L

I

Figure C.3: Element types used to model beam or plate structures with patches.

four-node solid element (Planel3) and a three-dimensional eight-node solid
element (Solid5). In ANSYS so-called extra shape functions are included to
enhance the accuracy of solid elements in bending problems [50].

In Figure C.4 part of a FEM model representing a flat plate with a surface
bonded rectangular patch is shown. The plate is modelled by four-node plate
elements (Shell63), where each node has six DOF, i.e. three displacements
and three rotations. The nodes of the piezoelectric solid elements (Solid5)
each have four DOF, i.e. three displacements and the electric potential. Two-
dimensional beam or strip problems can be modelled in ANSYS in a similar way
with two-node beam elements (Beam3) and the two-dimensional piezoelectric

elements (Planel3).
‘L
y Electrode surface

(all ¢(t) coupled)

Piezoelectric elements
(Solid5 - 4 DOF /node)

Plate elements Coupling constraints

(Shell63 - 6 DOF /node) (structural only)

Figure C.4: Part of a FEM model of a plate with surface bonded patch.

The plate elements are defined in the plane corresponding with the mid-plane
of the plate. Because the patch is bonded to the surface of the plate, there is
an offset between the plate and piezoelectric elements, which is equal to half
the plate thickness. The plate and piezoelectric elements are coupled with
constraint equations. In order to make this an easy procedure, the mesh is such
that the in-plane coordinates of the nodes defining the plate and piezoelectric
elements are equal. For each node on the bottom side of the patch and the
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corresponding node on the plate surface, the following constraint equations are
introduced (see Figure C.5):

(Upe)w = (up)z + (Op)y tp/2, (C.20a)
(Upe)y = (up)y — (Op)atp/2, (C.20D)
(Upe)z = (up)s . (C.20¢)

In this equation u, and 6, denote the displacements and rotations of a node
on the plate, uy. refers to the displacements of the corresponding node on the
patch, and t, is the plate thickness.

z
L»x Deformed

—
g
=
@
~—
8

— ’
Patch Qi,/j(“ps)z
L4 | 1
i ! T : T (0p)y
Plate = —————{' | [ > tn/2 ' e
A : R
Undeformed B
[
(up)a

Figure C.5: Graphical representation (two-dimensional) of constraint equa-
tions (C.20) for coupling of plate and piezoelectric solid elements.

The electrodes on the top and bottom surfaces of a patch are very thin
compared to the thickness of the piezoelectric material. It is therefore not
necessary to account for the stiffness and mass introduced by the electrodes.
The uniform distribution of the electric potential on an electrode is described
in the FEM model by equality constraints, i.e. the electric potential of all
nodes on a surface representing an electrode are coupled. If such an electrode
is furthermore grounded, then the potential is set to zero.

C.3 Comparison

The analytical model presented in Section C.1 is used for validation of the
“structural model” introduced in Chapter 4. The test case consists of a simply
supported plate with two surface bonded patches, see Figure C.6. One patch
is a voltage driven actuator and the other patch is a voltage sensor. The setup
is equal to the one considered in Section 4.4.1, except that the plate is simply
supported along all of its edges (rather than clamped). The two patches have
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equal size (50 x 30 x tp. mm) and equal material properties. More details
about this setup can be found in Figure 4.9.

z
Actuator

Sensor

Figure C.6: Simply supported plate with two surface bonded patches.

For a plate with simply supported boundary conditions the mode shapes are
given by:

Ymn = sin(ky, z) sin(k, y) , (C.21)

where k,, = mn/(l,), and k,, = nm/(l,),. The corresponding eigenfrequencies

are given by:
E,t2
W = (K2, + E2) | —=L2— . (C.22)
(b 50) \ 3102

For the simply supported boundary conditions, the generalised loads become:

Eptio; ki, + K

Ton, = _E ' €pe - [cos(kmx1) — cos(kmza)] [cos(kny1) — cos(kny2)] .
(C.23)

The definitions of Cy, 1, 22, y1 and ys is given in equations (C.10) and (C.13).
Equation (C.23) indicates that a mode can not be excited by an actuator patch
if the edges of the patch are symmetrically with respect to a nodal line. For
instance, a patch located at the center of the plate can excite only the even-
even modes, i.e. 1-1, 3-1, 3-3, etc..

The analytical and numerical model are compared by means of two fre-
quency response functions: the FRF from the actuator voltage V; to the nor-
mal sensor displacement u, (i.e. the transverse displacement of the center of
the patch) and the FRF from the actuator voltage to the sensor voltage V5.
In Figures C.7 and C.8 these FRF's are shown for the cases that the thickness
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of the patches is 0.1 mm and 1.0 mm, respectively. There is a good agree-
ment between the results if the patches are thin compared to the plate (i.e.
tpe = 0.1 mm). However, if the thickness of the patches is comparable to the
plate thickness (i.e. t,. =1.0 mm), the agreement between the FRFs corre-
sponding to the analytical and numerical models is less. The discrepancies
between the results are due to mass and stiffness of the patches, which are not
accounted for in the analytical model.

50 150 250 350 50 150 250 350
Frequency [Hz| Frequency [Hz|

Figure C.7: FRFs for analytical (—) and numerical (—) models for ¢, = 0.1 mm.

50 150 250 350 50 150 250 350
Frequency [Hz] Frequency [Hz|

Figure C.8: FRFs for analytical (—) and numerical (—) models for ¢, = 1.0 mm.



Appendix D

Radiation Filters

A number of methods for capturing the sound radiation behaviour into a state
space model have been reported in the literature. Such a model is referred to
as a radiation filter. The radiation filter can be appended to the state space
model of the structure yielding an efficient analysis tool for designing (modern)
control systems and also to simulate the performance of various control strate-
gies. Furthermore, a radiation filter enables the real-time implementation of
sensing strategies for sound power estimation with structural or acoustic error
Sensors.

Baumann, Saunders and Robertshaw [61] introduced the idea of a radiation
filter. They used a description of the sound power in terms of the structural
modes to develop the radiation filter. More recently, Gibbs, Clark, Cox and
Vipperman [62] introduced an alternative approach termed radiation modal
expansion. In contrast to the work of Baumann et al., they used a description
of the sound power in terms of the radiation modes to create the radiation
filter. These two approaches are discussed briefly in this appendix.

D.1 Derivation of the radiation filters

The general idea is to derive a state space model whose output is an estimate of
the time-averaged radiated sound power. In the frequency domain, the sound
power W can be written as (see Section 4.3):

W=vIRv,, (D.1)

where R is the radiation resistance matrix and v,, is the vector with normal
surface velocities of the elemental radiators. The radiation resistance matrix
is evaluated at discrete frequencies. In order to predict the sound power over
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a certain frequency band, the characteristics of R must be captured over that
band. A curve fit of each element in R would lead to a very “large” state space
model, which is impractical for control system design. The two approaches
presented here are based on an approximation of the sound power.

In the approach followed by Baumann et al. [61], which is here referred to
as “Baumann’s approach”, the basic equation is the expression of the radiated
sound power in terms of the structural mode participation factors q:

W=¢g"M¢q, where M=%'RV¥,, (D.2)

and W, is the matrix with the normal displacement components of the struc-
tural modes. It is important to note that the off-diagonal terms in M cannot
be neglected. It is possible to factorise the real, symmetric and positive definite
matrix M into the form GH G, so the sound power can be written as:

Ww=q¢g"'GlGgq=2"2z. (D.3)

Matrix G contains the frequency response functions (at discrete frequencies)
of the radiation filters which operate on the mode participation factors to give
z. Some elements in G have a small value and are set to zero to reduce the
model size. As a next step, an s-domain (Laplace domain) transfer function,
whose poles and zeros are located in the left half of the complex plane, is fitted
to each non-zero element in G to obtain G(s). The transfer function matrix
is subsequently transformed into a state space representation. Baumann’s
approach for creating a radiation filter is summarised in Figure D.1.

Baumann’s approach

e Evaluate radiation matrix R(w;) at discrete frequencies wj;

e Factorise M(w;) = G*(w;)G(w;), in one of two ways:

(a) M(w;) = ¥ R(w;)¥,, (a) R(w;))=TATT,
(b) M(w;) =T Ay T3, (b) G(w;) =VATT @,

(C) G(wi) = \/AM I‘;\F/[
e Set small elements in G(w;) to zero;

e Curve fit s-domain transfer functions to the non-zero ele-
ments in G(w;), resulting to G(s);

e Derive a state space representation of G(s).

Figure D.1: Baumann's approach for creating a radiation filter.
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It is noted that there are other methods to obtain the radiation filter from M
than the method in Figure D.1 [61, 108].

The approach followed by Gibbs et al. [62], which is termed radiation
modal expansion (RME), is based on the formulation of the sound power in
terms of radiation modes and efficiencies. Because the radiation efficiencies fall
off very rapidly with increasing radiation mode number, only a small number
of radiation modes must be taken into account to accurately predict the sound
power. A drawback is that the radiation modes depend on frequency. Borgiotti
and Jones [109] showed that the most efficient radiation modes below some
arbitrary frequency wpax can be synthesised by a linear combination of the
radiation modes at wyax. This property is used in the RME technique. The
velocity of the elemental radiators is written as v,, = I'axa, where ',y is
the matrix with a small number of radiation modes at frequency wmax. With
substitution of this expression, the sound power can be written as:

w=a"Aa, where A =TT

max R T'max - (D.4)
The radiation modes at wpnax are not orthogonal with respect to the radia-
tion modes at any other frequency. Therefore A is not a diagonal matrix (for
W # Wmax). However, Gibbs et al. [62] assume that the contribution of the
off-diagonal terms to the sound power is negligible. They denote the diagonal
terms as the RME coefficients: 1#]2- = diag(]\). The corresponding approxima-
tion of the sound power is:

W =all \/diag(_/i) \/diag(_/i) a=z"2. (D.5)

In order to create the radiation filter it is only necessary to curve fit s-domain
transfer functions to the RME coefficients v;, and to transform the result
into a state space representation. The radiation mode participation factors a
are found by filtering the normal surface velocities by the matrix with “fixed
frequency” radiation modes: & = T't_v,,. The RME approach for defining a
radiation filter is summarised in Figure D.2.

It is important to note that in contrast to Baumann’s approach, RME
leads to a radiation filter that only depends on the geometry, and not on
other properties of the structure (e.g. material and boundary conditions). It
is thus possible with RME to implement a sensing strategy for sound power
estimation without using knowledge of the structure besides the geometry.
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Radiation modal expansion (RME)

Evaluate radiation matrix R(w;) at discrete frequencies w;;
R(wmax) = I'nax Amax I‘Elax;

¢J2 (wl) = dla‘g (I‘Elax R(wl) Fmax) ;

e Curve fit s-domain transfer functions to ¢ (w;);

e Derive state space representations of 1/)]»(3).

Figure D.2: Radiation modal expansion for creating a radiation filter.

D.2 Structural-acoustic model

The state space models obtained with the two approaches for designing a ra-
diation filter have different input vectors. In Baumann’s approach the input
vector contains the time derivatives of the structural mode participation fac-
tors, q(t). In the case of RME, the input vector contains the normal velocities
of the elemental radiators v, (t). For both radiation filters the input matrix
and feedthrough matrix can be written in a form in which the input vec-
tor corresponds to x(t) = {q(t),q(t)}*, which is the state vector of the state
space representation of the structural model. Hence, the general state space
representation of the radiation filter is given by:

r(t) =Asr(t) + Byx(t), (D.6a)
z(t) = Cyr(t) + Dyx(t). (D.6b)

The length of the state vector r(t) is determined by the number of included
structural or radiation modes, and the order of the s-domain transfer functions
used for curve fitting. In the case of Baumann’s approach, also the criterion
for setting an element in G to zero determines the number of states in the
model. The time-averaged value of z(t)"z(t) is equal to the radiated sound
power.

The radiation filter can be combined with the state space representation of
the structural model to obtain a system model accounting for the structural-
acoustic coupling. The state space model of the structure with piezoelectric
patches is given by (see Section 4.2.4):

x(t) = Ax(t) + Bv(t), (D.7a)
y(t) = Cx(t) + Dv(t), (D.7b)
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where v(t) is the input vector (structural forces, voltage/charge driven actu-
ators), and y(¢) is the output vector (displacements, voltage/charge sensors).
Equations (D.6) and (D.7) can be combined to give a state space model for
the structural-acoustic system:

{};((;)) } - :113&]@ Xf: {f((:)) } + _]3] v(t), (D.8a)

{yg } - Sf cof {"EQ } " ]3] vie). (D.8b)

D.3 Test case

The two approaches for creating a radiation filter are compared by means of
an “open-loop” frequency domain analysis of the sound power radiated by a
clamped rectangular plate with two surface bonded piezoelectric patches. A
detailed description of this setup can be found in Section 4.4.1. The sound
power radiated by the plate (when excited by patch 1, see Figure 4.9) is
estimated with radiation filters created with Baumann’s approach and RME.
These results are compared to “exact” sound power, which is calculated with
equation (D.1). In all three cases the structural model is identical.

A number of remarks are made regarding the implementation of the ra-
diation filters. The starting point for both approaches was the radiation re-
sistance matrix R, which was calculated at 50 frequency steps in the range
from 70 to 520 Hz. In Baumann’s approach matrix M was factorised using a
singular value decomposition of the radiation resistance matrix R instead of
a decomposition of M (see Figure D.1, second bullet). It is possible to obtain
G in this way because the sound power is accurately predicted with a small
number of radiation modes. The radiation filter was created with 6 structural
modes and 5 radiation modes (the size of G was 5 x 6). Thus, the number
of structural modes included in the filter was less than the number of struc-
tural modes in the structural model. An element in G was set to zero if the
value of the element was less than 0.05 of the largest value in the associated
row. With this criterion 13 out of 30 elements were set to zero. Using a third
order transfer function to curve fit each (non-zero) element, the total number
of states in the radiation filter was 51. The RME radiation filter was created
with 5 radiation modes. The radiation modes at 520 Hz (highest frequency in
the range of interest) were used to define the RME coefficients. With a third
order transfer function to curve fit each RME coefficient, the number of states
in the radiation filter was 15.
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In MATLAB several procedures are available to curve fit an s-domain trans-
fer function to frequency response data. A procedure was applied to fit a stable
minimum phase transfer function to the magnitude of the the frequency re-
sponse data (with MATLAB function fitmag.m, which is part of the p-Analysis
and synthesis toolbox). The resulting transfer function has (nearly) the same
magnitude response as the frequency response data, but the phase response is
different.

N
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Figure D.3: Sound power estimations with Baumann's approach and radiation
modal expansion (excitation: patch 1, unit input).

The sound powers calculated with the radiation filters based on Baumann’s
approach and RME are compared with the “exact” sound power in Figure D.3.
It can be observed that both radiation filters give a good estimation of the
sound power at low frequencies. The filter created with Baumann’s approach
predicts the sound power up to the sixth resonance frequency (349 Hz) since
it was constructed with six structural modes. The filter created with RME
gives a good approximation of the sound power in the full range from 70 to
520 Hz. A further advantage of RME is that the radiation filter includes only
15 states, which is much less than the 51 states in the filter designed with
Baumann’s approach. It is therefore concluded that RME is the more efficient
technique to create a radiation filter. For the practical implementation of
radiation filters in sound power sensing strategies, the radiation modes must
be identified. A method to obtain these modes from experimental data is
described by Berkhoff [110].
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Adaptive Notch Filter

It is assumed that a continuous time domain signal y(¢) is sampled at a fixed
rate to produce a sequence y(n), where n is the sample number, which can
only take integer values. The output from the error sensor is written as the
superposition of the outputs from the primary and secondary paths (see equa-
tion (5.1)):

y(n) = ya(n) + ye(n), (E.1)

where the subscript d and ¢ refer to the primary and secondary paths, respec-
tively. The reference signal is defined as x(n) = sin(won), where wy = Tyw
and Ty is the time interval between two subsequent samples. The output from
the error sensor due to the primary source operating alone can be written as:

ya(n) = Ag sin(won + 0,) , (E.2)

where Ay and 6, are the (unknown) amplitude and phase shift introduced by
the primary path. This equation can also be written as:

ya(n) = Agcos(0g) sin(won) + Agsin(04) cos(won) . (E.3)

Clearly, the output from the error sensor is zero if y.(n) has amplitude A; and
is shifted 180 degrees with respect to 64. The adaptive notch filter is realised
using two reference signals: a sine wave and a cosine wave with a frequency
equal to that of the primary excitation. The output from the digital filter,
which is applied to the secondary source, is thus given by:

ve(n) = wo(n) sin(won) + wi(n) cos(won)
= wo(n) zo(n) + wi(n)xi(n), (E.4)
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where wp(n) and wi(n) are the filter coefficients. The goal is to adjust the
filter coefficients such that the output from the error sensor is cancelled. The
error criterion is chosen equal to the instantaneous square of the error signal:

J(n) = 3(n). (E:5)

This quantity is a quadratic function of the filter coefficients wp(n) and wi(n)
and has a unique global minimum. A convenient way to converge to the
optimum solution is by the steepest descent algorithm, which is given by [73]:

wi(n+1) = w;(n) — pai(n)y(n), i=1,2, (E.6)

where p is the step size, which controls the convergence of the algorithm, and
x!(n) are the so-called filtered reference signals.! The filtered reference signals
are found by passing the reference signals x;(n) through an estimate of the
secondary path FRF:

(G} = [, amdl oo} @

where A, and éc are the amplitude and phase shift of the secondary path
estimation at frequency wy.
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Figure E.1: Block diagram of an adaptive notch filter for narrowband feedfor-
ward control.

A block diagram representation of the adaptive notch filter is shown in Fig-
ure E.1. Tt is assumed that a sine wave signal generator is available on the

!This type of algorithm is generally referred to as filtered-z LMS algorithm because the
adaptation algorithm in equation (E.6) uses a “filtered” reference signal x(n).
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DSP. The cosine wave reference signal is obtained using a delay which cor-
responds to a phase shift of 90 degrees. The operation defined by equation
(eqAE:update-algorithm) is performed in the block labelled with “LMS” and
the new values of the filter are set accordingly. The estimation of the secondary
path is denoted by H,. The methods for identification of the secondary path
can be divided into off-line and on-line [73]. In off-line identification the sec-
ondary path is measured before operation of the active control system. This
method can be used if the secondary path FRF is nearly time-invariant. How-
ever, if the secondary path is continuously changing in time, it is desirable to
perform adaptive on-line identification.

The analysis of the adaptive notch filter was here restricted to the single
channel case, i.e. for a control system with one secondary source and one error
sensor. The extension to the multiple channel case can be found for instance
in the book of Kuo and Morgan [73].
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Appendix F

Description of the Genetic
Algorithm

In this appendix the genetic algorithm (GA) is described in more detail. The
main features of the current implementation are discussed in Section F.1. The
way in which constraints are handled by the GA is addressed in Section F.2.

F.1 Genetic algorithm

A GA can be implemented in many ways. Differences between the various
implementations can be found in the chromosome representation, creation of
the initial population, selection function, genetic operators and termination
criterion. These issues are briefly described in this section together with the
choice of the GA parameter values.

F.1.1 Chromosome representation

Each individual in the population maintained by the GA is represented by
a chromosome. A chromosome is made up of a sequence of genes from a
certain alphabet. Each gene represents a design variable. The first GAs used a
binary chromosome representation, i.e. the alphabet consisted of binary digits
(0 or 1). However, an alphabet can also consist of floating point numbers,
integers, characters, etc.. A guideline for choosing a representation is that
more natural representations of the design variables are more efficient and
produce better solutions. For example, for solving problems with real-valued
design variables, better results are found with a floating point representation
than with the binary representation [102].! Because the optimisation problem
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of Section 7.5 is one involving real-valued design variables (i.e. the location of
a patch), the current GA implementation uses a floating point representation.
In the floating point representation each gene is a floating point number and
the chromosome length is equal to the number of design variables.

F.1.2 Selection function

Selection of individuals is performed such that fitter individuals have an in-
creased chance of being selected. A common selection approach is to assign a
probability of being selected P; to each individual ¢ according to the fitness of
the individual. The cumulative probability C; for an individual ¢ is:

Ci=> P. (F.1)
j=1

Next, a random number r between 0 and 1 is generated and compared against
the cumulative probability. The individual ¢ for which C; <r < Cjyq is se-
lected. This is repeated in order to obtain a set of individuals with above
average fitness (one particular can be selected more than once).

There are various methods for assigning probabilities to individuals, such
as roulette wheel, linear ranking and geometric ranking. A ranking method
is used here as it does not require scaling of the object function in contrast
to some of the other methods. In a ranking method, the probability of being
selected P; is based on the rank of the individual ¢ when all individuals are
sorted with respect to their fitness. In normalised geometric ranking selection,
which is the scheme used in this work, P; is defined for each individual by:

g(1 —g)u !
P=———" = F.2
-1 (F2)
where ¢ is a parameter between 0 and 1, N is the population size, and R;
is the rank of individual 7, where one is the best. Larger values of ¢ imply
higher probabilities for fitter individuals (g is approximately the probability
of selecting the best individual).

1For converting a real-valued design variable into a binary number the design range must
be discretized. The required precision determines the number of digits to describe one design
variable, and thus the chromosome length.
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F.1.3 Genetic operators

Genetic operators provide the basic search mechanism of the GA. The appli-
cation of the genetic operators depends on the type of chromosome represen-
tation. In this subsection crossover and mutation functions based on a floating
point representation are briefly described.

Crossover

From two parent chromosomes x = {x1,z9,... ,2,} and 'y = {y1,%2, ... ,Un},
with n the number of real-valued design variables (chromosome length), a
crossover function produces the offspring chromosomes x and y.

Simple crossover. The parent chromosomes are divided into two segments
(x = {x1| x2}, where x; = {z1,... ,2,} and x; = {2p41,... ,2,}), and the
offspring is created as follows:

x={x1|y2} .
y={y1|x2}.

= =
B

The crossover point p, i.e. the point where the parent chromosomes are di-
vided, is randomly selected.

Arithmetic crossover. The offspring are two complimentary linear combina-
tions of the parents:

x=rx+(1-n)y, (F.5)
y=01-r)x+ry, (F.6)
where 7 is a random number between 0 to 1.

Simple arithmetic crossover. A combination of simple crossover and arithmetic
Crossover:

x={x1|rx2+(1-r)ys2}, (F.7)
y={yi|Q-r)xo+rys}.

Heuristic crossover. Assuming that x has higher fitness than y, a new indi-
vidual is created and the best individual is maintained in the population:

X=x+r(x-y), (F.9)
y =X, (F.10)
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where r is a random number between 0 to 1. Heuristic crossover differs from
the previous crossover functions in two ways: the fitness of the parents is used
in determining the search direction, and only one new individual is produced.

Mutation

A mutation function uses one individual x = {x1,x2,... ,2,} to produce an
offspring X. One design variable of the parent, say xj, is randomly selected
for mutation. Let [; and ug be the lower and upper bound, respectively, for
variable xy,.

Uniform mutation. The design variable is set to a random number within the
boundaries:

T =1l +r (uk — lk) , (F.ll)
where r is a random number between 0 and 1.

Boundary mutation. The design variable is set equal to either its lower or
upper boundary:

. { [ if a random digit is O, (F.12)

Tk = uy if a random digit is 1.

This operator is very useful for solving problems in which the optimum is
located either on or near the boundary of the search space.

Non-uniform mutation. The design variable is set equal to a random number
within a range depending on the generation number:

o { o+ (ur — 7x) f(g) if a random digit is 0, (F.13)

| @ — (xx — k) f(g) if a random digit is 1,

where f(g) = r (1 — g/N), where g is the generation number, N is the total
number of generations, b is a shape parameter (e.g. b = 2), and r is a random
number between 0 and 1. Initially this operator searches the design space
uniformly (¢ < N), but it searches more locally as the number of generations
increases.

F.1.4 [Initial population and termination

Two very basic methods are used to create an initial population and to ter-
minate the GA. The initial population consists of randomly generated chro-
mosomes, i.e. each gene is set to a random number within the boundaries of
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the corresponding design variable. The criterion for terminating the GA is a
specified maximum number of generations.

F.1.5 GA parameters

The values of the GA parameters used for solving the optimsation problem
of Section 7.5 are given in Table F.1. The choice of these values was based
on some guidelines found in the literature (e.g. reference [102]) and gave
satisfactory results for some simple test problems (analytical object functions),
It is generally recommended to use moderate population sizes (between 25 and
100 individuals), and to alter a relatively large portion of the chromosomes by
crossover or mutation.

Crossover Mutation Other

Simple 2 Uniform 1 Probability ¢ (F.2) 0.1
Arithmetic 2 Boundary 0 Population size 30
Simple arithmetic 2 Non-uniform 2 Max. generation 50
Heuristic 4

Table F.1: GA parameter values used for problem of Section 7.5.

In the case of a standard GA a crossover and mutation probability must be
defined.? However, a slightly different type of GA was used in this work, which
uses a fixed number of crossover and mutation operators. In each generation,
first a specified number of (not necessarily distinct) parents with above aver-
age fitness are selected with the selection function. Next, a same number of
(distinct) individuals with under average fitness are selected and removed from
the population. This set is obtained with the same selection function, however
with a reversed ranking order. The offspring produced with the parent chro-
mosomes take the places of the removed individuals. This type of algorithm is
referred to as the modified GA (“modGA”) in the book of Michalewicz [102]
and has better performance than the standard GA, i.e. there is a smaller
chance of convergence to a local optimum.

For the optimisation problem of Section 7.5, it is certain that the optimum
is not near the boundary of the search space. Hence, the number of boundary
mutations was set to zero.

2The crossover probability denotes the chance that a chromosome undergoes crossover,
whereas the mutation probability denotes the chance that a gene is mutated. Although the
mutation probability is generally much smaller than the crossover probability, the number
of chromosomes changed by mutation and crossover are of the same order.
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F.2 Handling constraints

The previous description of the GA is applicable to optimisation problems
where each design variables is restricted to values within a given interval.
However, in most real-life problems the design variables must satisfy some
additional constraints. For example, when optimising the placement of PZT
patches on a plate structure (see Section 7.5), there is the physical constraint
that the patches may not overlap.

There are many ways to incorporate constraint handling in GAs of which a
comprehensive overview was presented by Coello Coello [111]. In this work the
probably most easy way to handle constraints is applied: rejection of infeasible
individuals (also called “death penalty” method). It is implemented as follows:
if an individual produced by one of the genetic operators is infeasible, i.e. does
not satisfy all constraints, then the operation is repeated. In the next step,
the “random parameter” (e.g. crossover point for simple crossover or random
number r for uniform mutation) is redefined. This is repeated until a feasible
solution is found or a maximum number of attempts is exceeded.?

The following issues are of importance for the problem of optimising the
locations of piezoelectric patches:

e A relatively small portion of the plate area is covered with patches, i.e.
the feasible search space constitutes a large portion of the whole search
space.

e Evaluating the overlap constraint is computationally inexpensive (com-
pared to an evaluation of the object function).

e The overlap constraint is not given in algebraic form; the algorithm
returns whether or not an individual is feasible, but gives no estimation
of the degree of infeasibility.

e It is not possible to evaluate an infeasible individual (that is, the FEM
model cannot be defined).

As shown in Chapter 7 of the book by Michalewicz [102], the death penalty
method must not be applied if the feasible search space is small compared to
the whole search space. However, if this is not the case, a GA using the death
penalty method produces results nearly equal to those found with GAs based
on more advanced constraint handling techniques.

3In some cases this approach would result in an infinite loop if the number of iterations
is not limited by a maximum.
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